ارزیابی اقتصادی طرح ملی شیرین‌سازی و انتقال آب خلیج ‌فارس به معادن جنوب شرقی کشور: رهیافت مدل تعادل عمومی قابل ‌محاسبه مالی (FCGE)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم اقتصادی، دانشکده اقتصاد و علوم اداری، دانشگاه اصفهان

2 دانشیار گروه اقتصاد، دانشکده اقتصاد و علوم اداری، دانشگاه اصفهان

3 Faculty of Engineering, University of Isfahan, Isfahan, Iran

4 استادیارگروه اقتصاد، دانشکده اقتصاد و علوم اداری، دانشگاه اصفهان

چکیده

هدف از نگارش این مقاله ارائه یک الگوی تعادل عمومی قابل‌ محاسبه مالی پویا است که بتواند با تأکید بر بخش آب، آثار اقتصادی ساخت، تأمین مالی و بهره‌برداری از پروژه زیربنایی شیرین‌سازی و انتقال آب خلیج ‌فارس به معادن جنوب شرقی کشور را توسط بخش عمومی یا بخش خصوصی (با شیوه مشارکت عمومی خصوصی) مورد ارزیابی قرار دهد. بعد از طراحی مدل و شبیه‌سازی سناریوها نتایج حاصل بیان‌گر این واقعیت است که ساخت و بهره‌برداری از این پروژه، در صورتی ‌که توسط بخش خصوصی صورت گیرد و تأمین مالی آن از محل حذف یارانه آب و انتشار سهام در بازار سرمایه انجام شود، اثر مثبت بالاتری بر تولید ناخالص داخلی و رفاه اجتماعی نسبت به زمانی که توسط بخش عمومی و با تأمین مالی از محل انتشار اوراق مشارکت یا وضع مالیات بر محصول آب صورت گیرد، خواهد داشت. به ‌عبارت ‌دیگر ساخت و بهره‌برداری از پروژه توسط بخش خصوصی از محل حذف یارانه آب و انتشار سهام در بازار سرمایه بدون افزایش بهره‌وری منجر به افزایش در تولید ناخالص داخلی به میزان 0224/0 درصد خواهد شد، ولی در رفاه خانوار تغییر محسوسی ایجاد نخواهد کرد؛ اما در صورتی‌ که با افزایش بهره‌وری همراه باشد، تولید ناخالص داخلی به میزان 0751/0 و رفاه اجتماعی به میزان 0016/0 درصد افزایش خواهد یافت. از طرف دیگر در صورتی ‌که ساخت و بهره‌برداری توسط بخش عمومی و از محل انتشار اوراق مشارکت صورت گیرد؛ باعث افزایش تولید ناخالص داخلی به میزان 0175/0 درصد و کاهش رفاه خانوار به میزان 002/0 درصد خواهد شد و اگر تأمین مالی آن از محل وضع مالیات بر محصول آب باشد، تولید ناخالص داخلی به میزان 0108/0 درصد افزایش و رفاه اجتماعی خانوار نیز به میزان 0004/0 درصد کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Economic evaluation of the Persian Gulf water desalination and the project of water transmission to the southeast mines of the country: A financial computable general equilibrium (FCGE) model

نویسندگان [English]

  • Azar Tabesh 1
  • Majid Sameti 2
  • Saeed Samadi 2
  • Mehrdad Farhadian 3
  • Gholamhossein Kiani 4
1 Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran
2 Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran
3 department of chemical engineering, Faculty of engineering,university of Isfahan,Isfahan,Iran
4 Faculty of Administrative Sciences and Economics, University of Isfahan, Isfahan, Iran
چکیده [English]

Introduction: Iran is located in the arid and semi-arid region of the world and is facing a severe water shortage. The share of industries and mines in the total amount of water consumption in this country is about two percent, which is very small as compared to developed countries. However, the geographical distribution and location of industries and mines are not been water-centered, and this has led to many obstacles in providing water resources for industry and mining, despite the low share of this sector compared to the global average. For example, an important part of Iran's mines such as iron and copper mines are located in low-water provinces such as Hormozgan, Kerman and Yazd. But there are two main strategies for managing water resources in industry and mining. The first option is to use saltwater instead of fresh water (desalted seawater), and the second option is to use water recycling processes. In recent years, the high share of the current budget in the country's public budget has made the government unable to complete the construction and operation of infrastructures in various areas, including the water industry. Moreover, despite the sanctions on the Iranian oil industry and the limited foreign exchange earnings, the possibility of financing such projects with the revenues from oil sale has decreased, and the government must inevitably rely on the revenues from taxes, service tariffs, the issuance of government bonds, or the capacity of the private sector. Of course, various methods of financing infrastructure projects sometimes have different effects on the economy. Therefore, it is necessary to study the effect of constructing these infrastructures on the economy according to the way of financing them. This paper aims to provide a dynamic financial computable general equilibrium model that can evaluate the public-private partnership by focusing on the water sector, the effects of building, financing and operating desalination centers and transferring the Persian Gulf water to the mines sector in the southeast of the country.
Methodology: In order to investigate the trend of changes in the variables of this model, a recursive financial computable general equilibrium is used. After the model is specified, three different scenarios are simulated using the MCP technique and the GAMS software. In all these scenarios, it is assumed that the project will be built for seven years and operated for 15 years. The construction of this project has led to an increase in the supply of unconventional water to the mining sector by 650 million cubic meters. But the financing methods of the project are assumed to be different in these scenarios. In the first scenario, financing is done by the issuing of government bonds, in the second scenario, by the imposing of a tax on the water product, and, in the third scenario, by the issuing of equities and eliminating of water subsidies (in terms of the productivity index).
Results and Discussion: The results of simulations show that the project, if implemented by the private sector and financed by eliminating water subsidies and issuing equities in the capital market for the building and operation period, will have higher positive effects on the gross domestic production and social welfare than when it is implemented by the public sector and financed by issuing bonds or imposing a tax on water products. In other words, the building and operation of the project by the private sector by the elimination of water subsidies and the issuance of equities in the capital market without increasing productivity will lead to an increase of 0.0224% in the GDP, but it will not make a significant change in the household welfare. If an increase in productivity accompanies it, the GDP will increase by 0.0751 percent and social welfare by 0.0016 percent. On the other hand, if building and operating are done by the public sector and by the issuing of bonds, it will increase the GDP by 0.0175 percent and reduce the household welfare by 0.002 percent. If it is financed by imposing a tax on water products, the GDP will increase by 0.0108 percent, and household social welfare will decrease by 0.0004 percent.
Conclusion: The results show that the building and operation of the project in any way leads to an increase in the GDP. However, the GDP in the public-private partnership method increases more than in the other methods when productivity increases during the operation period (the second case of the third scenario). In the traditional method, if the project is financed by the issuance of government bonds, the increase in the GDP will be greater than that when the project is financed by tax revenues. Also, the change in the household welfare is negative in the first and the second scenarios, where the project is traditionally implemented by the government. In the third scenario, however, where the project is implemented using a public-private partnership contract, the productivity is zero when it is unchanged, but it is positive when it increases in the period of operation.

کلیدواژه‌ها [English]

  • Financial computable general equilibrium model
  • Financing
  • Public-private partnerships
  • Desalination
  • Inter-basin water transfer
Adam, C. S. & Bevan, D. L. (2006). "Aid and the Supply Side: Public Investment, Export Performance, and Dutch Disease in Low-Income Countries". The World Bank Economic Review 20(2): 261-290.
Aschauer, A. (1989). "Is Public Expenditure Productive? ". Journal of Monetary Economics 23(2): 177-200.
Barro, R. J. (1990). "Government Spending in a Simple Model of Endogenous Growth". Journal of Political Economy 98(5): 103-125.
Berrittella, M. Hoekstra, A. Y. Rehdanz, K. Roson, R. & Tol, S. (2007). "The Economic Impact of Restricted Water Supply: A Computable General Equilibrium Analysis". Water Research 41(8): 1799-1813.
Berrittella, M. Rehdanz, K. & Tol, R. S. (2006). "The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis". FEEM Working Paper No. 154.06.
Chen, Z. Daito, N. & Gifford, J. L. (2017). "Socioeconomic Impacts of Transportation Public-private Partnerships: A Dynamic CGE Assessment". Transport Policy 58: 80-87.
Diao, X. & Roe, T. (2003). "Can a Water Market Avert the “Double-Whammy” of Trade Reform and Lead to a “Win–Win” Outcome? ". Journal of Environmental Economics and Management 45(3): 708-723.
Dissou, Y. & Didic, S. (2013). Infrastructure and Economic Growth in Asia, Springer, Cham.
Easterly, W. & Rebelo, S. (1993). "Fiscal Policy and Economic Growth: An Empirical Investigation". National Bureau of Economic Research Working Paper No.4499.
Estache, A. & Fay, M. (2007). Current Debates on Infrastructure Policy, The World Bank.
Fedderke, J. Perkins, P. & Luiz, J. (2006). "Infrastructural Investment in Long-Run Economic Growth: South Africa 1875–2001". World Dev 34(6): 1037-1059.
Fourie, J. (2006). "Economic Infrastructure in South Africa: a Review of Definitions, Theory and Empirics". South Afr J Econ 74(3): 530-556.
Gramlich, E. M. (1994). "Infrastructure Investment: A Review Essay". Journal of Economic Literature 32(3): 1176-1196.
Hakfoort, J. (1996). "Public Capital, Private Sector Productivity and Economic Growth: A Macroeconomic Perspective". In Infrastructure and the Complexity of Economic Development: 61-72. Springer, Berlin, Heidelberg.
Haqiqi, I. (2013). Designing a Financial Computable General Equilibrium for Iran, The Monetary and Banking Research Institution.
Islamic Parliament Research Center of the Islamic Republic of IRAN (2019). Resource Management and Improving Water Consumption Pattern in Iran's Mining and Mining Industries (Part I), NO 16455, https://rc.majlis.ir/fa/report/show/1149034.
Islar, M. & Boda, C. (2014). "Political Ecology of Inter-basin Water Transfers in Turkish Water Governance". Ecology and Society 19(4): 21-40.
Khan, M. & Reinhart, C. (1990). "Private Investment and Economic Growth in Developing Countries". World Development 18: 19-27.
Kim, E. & Bae, Y. (2015). "Economic Contribution of the Private Sector on Financing and Operation of a Highway: Financial Computable General Equilibrium". Journal of Transport Economics and Policy (JTEP) 49(3): 397-414.
Kim, E. (1998). "Economic Gain and Loss from Public Infrastructure Investment". Growth and Change 29(4): 445-469.
Kim, E. Hewings, G. J. & Amir, H. (2017). "Economic Evaluation of Transportation Projects: An Application of Financial Computable General Equilibrium Model". Research in Transportation Economics 61: 44-55.
Kneller, R. Bleany, M. & Gemmell, N. (1999). "Fiscal Policy and Growth: Evidence from OECD Countries". Journal of Public Economics 74: 171-90.
Liu, X. & Chen, X. (2008). "Methods for Approximating the Shadow Price of Water in China". Economic Systems Research20(2): 173-185.
Lofgren, H. & Robinson, S. (2008). "Public Spending, Growth, and Poverty Alleviation in Sub-Saharan Africa: a Dynamic General-Equilibrium Analysis". In Public Expenditures, Growth, and Poverty: Lessons from Developing Countries (Vol. 51). Intl Food Policy Res Inst. Retrieved from http://www.pep-net.org.
Lofgren, H. Harris, R. L. & Robinson, S. (2002). A Standard Computable General Equilibrium (CGE) Model in GAMS (Vol. 5). Intl Food Policy Res Inst.
Luckmann, J. Grethe, H. McDonald, S. Orlov, A. & Siddig, K. (2014). "An Integrated Economic Model of Multiple Types and Uses of Water". Water Resources Research 50(5): 3875-3892.
Manzoor, D. Haqiqi, I. & Aghababaei, M. (2012). "Decomposing Electricity Demand Elasticity in Iran: Computable General Equilibrium Approach". The Journal of Economic Policy 4(8): 91-112.
McKibbin, J. & Wilcoxen, J. (1998). "The Theoretical and Empirical Structure of the G-Cubed Model". Economic Modelling 16(1): 123-48.
Nejati, M. (2017). "The Role of Foreign Direct Investment in Iran's Economy Using the Computable General Equilibrium Model". The Journal of Economic Policy 9(18): 65-100.
Ott, I. & Turnovsky, S. (2005). "Excludable and Non-Excludable Public Inputs: Consequences for Economic Growth". CESIFO Working Paper No.1423.
Palatnik, R. R. (2019). "The Economic Value of Seawater Desalination-The Case of Israel". In Economy-Wide Modeling of Water at Regional and Global Scales. Springer, Singapore. Retrieved from https:// link.springer.com.
Perrault, J. F. Savard, L. & Estache, A. (2010). "The Impact of Infrastructure Spending in Sub-Saharan Africa: A CGE Modeling Approach". World Bank Policy Research Working Paper 5386.
Richaud, C. Sekkat, Kh. & Varoudakis, A. (1999). "Infrastructure and Growth Spillovers: A Case for a Regional Infrastructure Policy in Africa". University of Brussels, Retrieved from  https://citeseerx.ist.psu.edu.
Romer, P.M. (1990). "Endogenous Technological Change". J Polit Econ 98(5): 71-02.
Romp, W. & De Haan J (2005). "Public Capital and Economic Growth: A Critical Survey". EIB Papers 10(1): 250-265.
Shan, F. & Zhi-gang, D. (2005). "Water Embedded CGE Model to Assess the Impacts of South to North Water Transfer to Recipient Region". IFAC Proceedings Volumes 38(1): 54-59.
Shao, X. Wang, H. & Wang, Z. (2003). "Inter Basin Transfer Projects and Their Implications: A China Case Study". International Journal of River Basin Management 1(1): 5-14.
Thorbecke, E. (1991). "Adjustment, Growth and Income Distribution in Indonesia". World Development 19(11): 1595-614.
Tinbergen, J. (1962). Shaping the World Economy, Suggestions for an International Economic Policy, New York, the Twentieth Century Fund.
Yousefi, A. (2011). The Impact of Water Scarcity in Iranian Economy: A Computable General Equilibrium Analysis, Doctoral Dissertations of Agricultural Economics, Policy and Economic Development, Agricultural University, Tarbiat Modares University.