تهمه کشش قیمتی تقاضای برق در ایران: تحلیل تعادل عمومی

محاسبه پذیر

1. داوود منصور
2. ایمان حقیقی
3. محمد ابراهیم آقاباکی

چکیده

هدف این مقاله، معرفی کاربردهای روبوکر تحلیل تعادل عمومی محاسبه پذیر در تجزیه و تحلیل کشش قیمتی است. به عنوان یک نمونه کاربردی، کشش قیمتی تقاضای برق مورد توجه قرار گرفته است. در این تحقیق از یک الگو تحلیل عمومی محاسبه پذیر برای اقدام ایران با فرض یک اقتصاد باز و کوچک استفاده شده است. در جنبه مدل تعادل عمومی پیشنهادی، چگونگی محاسبه بهره خانواده و فعالیت‌های تولیدی از کشش قیمتی کل تقاضای برق و همچنین نحوه تجزیه اثرات کشش قیمتی تقاضای برق در فعالیت‌های تولیدی به‌عنوان مقیاس اثر جانشینی (رقبر) و اثر تخصص مجدد معرفی شده است.

نتایج نشان می‌دهد که با افزایش 100 درصدی قیمت نهاد برق، تقاضای برق در کوتاهمدت به میزان 87/8 درصد کاهش یافته است. از این مقدار حدود 32/01 درصد از کاهش تقاضای برق مربوط به خانواده بوده و حدود 46/81 درصد نیز سهم فعالیت‌های تولیدی است. در فعالیت‌های تولیدی نیز تغییر در برق‌بری با 5/61 درصد بیشترین اثر را به خود اختصاص داده است. اثر مقیاس و اثر تخصص مجدد نیز موجب کاهش تقاضای برق فعالیت‌های تولیدی به ترتیب به میزان 0/06 و 12/11 درصد شده‌اند. از میان فعالیت‌های تولیدی، فعالیت‌های «خدمات عمده‌فرشی و خردهفرشی» و «فلزات و کانی‌های غیر فلزی» بیشترین نقص را در اثر جانشینی دارند. به گونه‌ای که در کوتاهمدت این دو فعالیت از کل 58/61 درصد اثر جانشینی به ترتیب 27/58 و 34/84 و 12/11 درصد از تغییر تقاضا به خود اختصاص داده‌اند.

واژگان کلیدی: کشش قیمتی، تقاضای برق، تعادل عمومی محاسبه پذیر، تجزیه کشش.

Keywords: Electricity, Demand, Computable General Equilibrium, Elasticity, Iran.

JEL Classification: D21, D22, D58, L94, Q41.

Manzoor@isu.ac.ir
haqiqi@ses.ac.ir
Aghababaei@ut.ac.ir

1 عضو هیات علمی دانشگاه اقتصاد دانشگاه امام صادق (ع) مدرس دانشگاه علوم اقتصادی
2 دانشجوی دکتری علوم اقتصادی دانشگاه تهران
3 دانشجوی دکتری علوم اقتصادی دانشگاه تهران
1- مقدمه

کشش قیمتی تفاوت میزان حساسیت تفاوت‌های یک کالا را به تغییر یافته نشان می‌دهد. این رو
کشش قیمتی به ترتیب یکی از مفاهیم برجامی به اهمیت در سیاست‌گذاری اقتصادی دارد و شما می‌توانید باید
از عوامل تعیین کننده در میزان اثرگذاری سیاست‌های اقتصادی نیز می‌باشد. به عنوان مثال، کشورها
در تصمیم برای تعیین مقدار عرضه نفت این توجه کننده‌ی افزایش یا کاهش درآمد ناشی از
افزایش عرضه، به کم کشش بودن یا پرکشش بودن تفاوت‌های نفت سختی‌دارد (Hansen &
Lindholt, 2008). همچنین، مقدار کشش تفاوت‌های تعیین کننده چگونگی و میزان تغییر رفتار
کارگزاران اقتصادی در اثر سیاست مالیات بر کالاهای ناشی است (Goel, 2009) و لذا در
تعیین نرخ این مالیات باید مورد توجه قرار گیرد. به شکل مشابه، میزان تغییر از انتشار آینده بر
اثر وضع مالیات‌های سیستمی سختی‌داری به کشش قیمتی تفاوت‌های ارزی‌های فیزیکی دارد (Lucas &
Lutz, 2009). در همه مثال‌های پیشین، تعیین ابعاد یک سیاست برای استراتژی‌های یک هدف،
مستلزم اطلاع از کشش‌های قیمتی است.

کاربرد و سوی کشش‌های قیمتی در سیاست‌گذاری اقتصادی باعث شده است به‌سیاری از مطالعات
اقتصادی به بررسی کشش‌های قیمتی در مورد محصولات مختلف اختصاص یابند. مطالعات
آماری و اقتصاد سنگی قادرون میزان حساسیت تفاوت‌های برق به تغییر در قیمت برق را محاسبه
نمایند. اما اغلب این مطالعات به بررسی کشش‌های قیمتی به صورت تجربی و برای کل تفاوت‌های
یک محصول می‌پردازند. در این مطالعات فرض می‌شود کشش قیمتی یک پارامتر پرچمی بوده و
لذا در این بررسی‌ها عوامل و نیز تأثیر این تفاوت‌های قیمتی بر قیمت برق مورد بررسی قرار نمی‌گیرد. اما این
پارامتر می‌تواند خود تحت تاثیر سیاست‌های اقتصادی در بلند مدت تغییر کند. یک سوال مهم این
است که چه عواملی تعیین کننده مقدار کشش قیمتی نفاذی هستند؟ با تفکیک این عوامل موثر،
می‌توان اثرگذاری سیاست‌های اقتصادی را به‌بینی کرده، به‌یاد دنیوی، سیاست‌گذاری بخشی و
منطقه‌ای ایجاب که کننده کشش‌های قیمتی نفاذی کل به اجزای مختلف آن تجزیه شوند، این
تحقیق نیز با هدف کمک به سیاست‌گذاری‌های بخشی، معی در تجزیه کشش قیمتی نفاذی
خواهد داشت.

این تحقیق به چند دلیل بر بازار برق متمرکز است. اول اینکه بازار برق یکی از بازارهایی است که
در آن قیمت‌گذاری‌های بخشی و منطقه‌ای، ممکن و شایع است. در ثانی در ایران طی سالیان
تجزیه کشش قیمتی تقاضای برق در ایران: تحلیل تعداد عمومی محاسبه‌پذیر

گزینه‌ها، شکاف زیادی بین هزینه تمام شده اقتصادی هر کیلووات ساعت برق تحلیلی به مشترکین و متوسط نرخ فروش برق ایجاد شده است. به نحوی که مقایسه متوسط قیمت جهانی برق با قیمت آن در ایران حاکی از باین بودن این قیمت در ایران و در نتیجه چهار برابر بودن مصرف سرانه برق در کشور نسبت به استانداردهای جهانی است. به همین دلیل است که در سال 1389، سیاست افزایش قیمت برق در قانون هدفمندسازی یارانه‌ها لحاظ شده و لذا بررسی آثار افزایش قیمت برق بر تقاضای آن مورد توجه قرار گرفت. به این ترتیب به نظر می‌رسد می‌توان از نتایج تحلیل کشش قیمتی تقاضای برق در چگونگی قیمت‌گذاری تبعیضی و بخش برق در اجرای این قانون بهره گرفت. البته ویژگی معنی‌دار شده در این تحقیق را می‌توان برای تجزیه کشش قیمتی تقاضا در مورد سایر محصولات نیز به کار برد.

هدف این مطالعه بررسی تغییرات تقاضای برق به تفکیک عوامل تشکیل دهنده آن به واسطه افزایش دائمی در قیمت برق است. به عبارت دیگر این مقاله از بروز تجربه کشش قیمتی و توضیح عوامل تشکیل دهنده به صورت نظری و اندازه‌گیری شدته آن در اقتصاد ایران می‌باشد. از این رو بخش دوم ضمن مرور اجمالی بر مطالعات صورت گرفته در این زمینه، به بررسی و تبیین اثرات تعداد عمومی ناشی از تغییر قیمت نهاده برق و مکانیسم‌های تغییر در تقاضای برق در چند گام تکرار شونده می‌پردازد. در بخش سوم ویژگی‌های مدل تعداد عمومی مورد بررسی قرار می‌گیرد. در بخش چهارم تقاضای نهاده برق از سوی بینگاه‌ها و خانوارها با تفکیک بیشتری مورد بررسی قرار گرفته و تجربه سبک بینگاه‌ها و سهم خانوارها از تغییر نسبی برای برقی تقاضای کل و همچنین تجربه سهم بینگاه‌ها به اثر جانشینان در سطح خرد، اثر تحقیصی مجدد و اثر مقیاس می‌پردازد. نتایج برآورد مدل تعداد عمومی برای اقتصاد ایران در بخش پنجم ارائه و تحلیل گردیده است. بخش ششم نیز به نتیجه‌گیری و ارائه توصیه‌های سياسی می‌پردازد.

1 در سال 2008 متوسط مصرف برق در بخش خانگی در ایران 2900 کیلووات ساعت در سال بوده، در حالی که متوسط سرانه مصرف برق هر مشترک خانگی در جهان در این سال حدود 900 کیلووات ساعت بوده است (آمار و نمودارهای انرژی در ایران و جهان 1387-2008).
۲- ادیبیات موضوع و مطالعات صورت گرفته

در ادیبیات اقتصادی، بررسی میزان واکنش تقاضا به تغییرات قیمت از طریق سنجش کمش‌های قیمتی و درآمدی صورت می‌پذیرد. هر چند میزان کمش‌های تقاضای اطلاعات منفی در زمینه میزان واکنش تقاضا ارائه می‌دهند، اما این اطلاعات در مورد تغییرات صورت گرفته به خاطر افزایش قیمت محدود است. به عبارتی اهمیت انواع مختلف اثرات جانشینی و سایر تغییرات داخل بنگاه‌ها و خانوارها تناها با استفاده از کمش (نرمی شده) تفاوت قابل شناسایی نیست. کمش قیمتی تقاضا درصد کاهش تقاضای کل برق به ازای یک درصد افزایش قیمت برق را نشان می‌دهد، ولی برای مقادیر بسته‌گذاری، تجزیه دقیقتر عوامل تشکیل دهنده این کمش ضروری به نظر می‌رسد. از این رو در این مطالعه با بهره‌گیری از چارچوب تعداد عمومی اثر افزایش قیمت بر تقاضا به عوامل مختلف تجزیه خواهد شد.

بررسی اثرات ناشی از تغییرات قیمت افزایشی آن در قالب الگوهای تعداد جزئی، مورد توجه بسیاری از مطالعات بوده است. غالب مطالعات صورت گرفته در این زمینه رویکردی جزئی به سیاسه داشته و بسیاری از آثار تعداد عمومی مورد گفتار قرار گرفته است. بهره‌گیری از چارچوب مدل‌های تعداد جزئی در بررسی نحوه تعیین تقاضا به سبب افزایش قیمت موجب می‌شود تعداد بخش‌ها و تغییرات صورت گرفته به خوبی متعکس نگردد. مدل‌های تعادل عمومی قادرند تمامی اثرات را اندازه‌گیری نمایند و از این جهت در این زمینه مناسب‌تر به نظر می‌رسند. تغییر قیمت نهاده برق علاوه بر اثر جانشینی و اثر درآمدی در سطح خرد، در سطح کلان نیز سبب ایجاد تعادلی در همه بخش‌ها و نهاده‌ها می‌گردد. بررسی دقیق‌تر این اثرات ناپایدار بهره‌گیری از نگاه تعداد عمومی است. به طور کلی در روش‌کرد تعادل عمومی روابط اثر‌گذاری و اثرپذیری ناشی از افزایش قیمت برق را می‌توان این گونه بیان نمود:

- جانشینی عوامل تولید و کالاهای واسط‌های در هر یک از فعالیت‌های تولیدی به دنبال افزایش قیمت برق؟
- اثر قیمت بالاتر برق بر هزینه تولید و قیمت کالاهای غیر قابل تجارت که از طریق ساختار داده-ستاند آنتیک می‌شود.
- افزایش قیمت برق باعث افزایش هزینه تولید و کاهش نوائیدی و رقابت در مورد کالاهای قابل تجارت می‌شود. با توجه به فرض ثابت بودن قیمت‌های جهانی و شرط سود صفر در تولید،
ممكن است تقاضا برای برخی نهاده‌های دیگر مانند توری کار کاهش یابد که به کاهش دستمزد و هزینه کار می‌انجامد. این تغییرات در مجموع اثر جانشینی تقاضا بر قرب را متأثر می‌سازد.

اگر نخست افزايش قیمت برق تغییرات سطح تولید در کلیه فعالیت‌ها را به دنبال دارد (اثر مقیاس)

که این امر به نوبه خود تقاضا بر قرب را متأثر می‌سازد.

هر چند تغییر تقاضای برق در اثر تغییرات قیمت آن، نتیجه تعاملات بسیار زياد و پیچیده بين متغیرهای اقتصادی باشد، ولی به طور کلی این تغییرات را در جنگ گام تکرار شونده می‌توان خلاصه نمود.

گام دوم: کاهش سطح فعالیت داخلی باعث کاهش تقاضای کار و سرمایه شده و در آمد خانوارها را از این محل کاهش می‌دهد. کاهش درآمد خانوارها سبب می‌شود تقاضای خانوارها از همه کالاها و خدمات از جمله برق کاهش یابد (اثر درآمدی منفی).

گام سوم: بنگاه‌ها و خانوارها با افزایش قیمت، از میزان استفاده از برق به عنوان نهاده تولید وا مصرف می‌کاهند و سایر حامل‌های انرژی و یا سایر نهاده‌های تولید را به جای

1. Rybczynski Effect
2. این اثر جانشینی با اثر جانشینی مرسوم متفاوت است.
آن جایگزینی‌می‌کنند. از این رو اثر جانشینی ۱ باعث یکاهی تعقیبی برک و افزایش تعقیب‌های سایر نهادها می‌شود.

- گام چهارم: اثر جانشینی باعث افزایش تعقیبی کار و سرمایه‌ای خواهد شد. از سوی دیگر افزایش تعقیبی از کار و سرمایه‌ای باعث افزایش درآمد خانوارها از این محل شده و تعقیبی برای همه کالاها و خدمات از جمله برک افزایش می‌یابد (اثر درآمده مثبت).

- گام پنجم: جانشینی‌های نهاده‌ای تولید از یک سو و اثر درآمده مثبت از سوی گیر باعث می‌شود توان رقابت در سطح بین الملل مجدداً افزایش یافته و لذا صادرات افزایش و واردات کاهش یابد. این اثر که به عنوان اثر محصول ۲ شناخته می‌شود، سبب افزایش تعقیب‌های برک می‌شود.

در بین مطالعات صورت گرفته (۱۹۹۵) Ang در مقاله خود به تجزیه تغییرات در تعقیب‌های انرژی به مولفه‌های مختلف شامل تغییرات سطح تولید، تغییرات ساختار تولید و تغییر شدید مصرف انرژی در بخش‌های اقتصاد به صورت نظری پرداخته است. در این مقاله چارچوبی کلان برای تجزیه اثرات تغییر قیمت انرژی ارائه گردیده است. همچنین (۲۰۰۶) Steenhof تغییر قیمت انرژی اثر اساسی در اقتصاد به توجه کرده است. با استفاده از این تکنیک، افزایش سطح فعلی صنعتی عامل اصلی افزایش تعقیبی برک در بخش صنعتی در سال‌های ۱۹۹۸ تا ۲۰۰۲ به شمار می‌رود و البته انرژی‌های تجدیدپذیر در این افزایش کار آمیخته شده است. مطالعات سیاسی انگلیسی نیز با استفاده از روبیکر تعداد عمومی در این حوزه صورت پذیرفته است. به عنوان مثال Madlener (۱۹۹۵) به صورت جامع به بررسی نقاط ضعف و قوت روبیکر به صورت مختلف در زمینه اندازه‌گیری اثرات تکنیکی شده تعقیب پرداخته است. در نهایت Holmoy در سال ۲۰۰۵ مندلی برای اقتصاد نرخ ارائه نموده که با استفاده از روبیکر تعداد عمومی محاسبه‌پذیر به تجزیه حساسیت قیمتی تعقیبی برک پرداخته است. در ایران، هر چند مطالعات محدودی در زمینه محاسبه کوشش تعقیبی برک صورت پذیرفته، اما تجزیه کوشش قیمتی تعقیبی اصلاً مورد توجه نبوده است. تقریباً همه این مطالعات از روبیکر تعداد جزئی برای محاسبه کوشش استفاده نموده‌اند. برای نمونه مطالعه فتح‌آباد زاده ایقدم (۱۳۷۳) تعقیب‌های

1. با افزایش قیمت انرژی، کالاها و خدمات غیر انرژی جانشین انرژی می‌گردند.
2. Output Effect
تجزیه کلیش قیمتی نقش‌آمیزی برخ در ایران: تحلیل تعادل عمومی محاسبه‌پذیر

انرژی بخشهای خانگی کشور را تخمین زده است. نتایج به دست آمده حاکی از آن است که برای همانند حامل‌های ارزی، کلاه‌پوشی در سبد مصرفی خانوار محصول می‌شود. مطالعه وی کلیه تقاضا برای برآورد نموده است. فهرستی (1371) توابع تقاضا تعدادی از حامل‌های انرژی را برای بخش‌های مختلف برآورد نموده است. بر اساس توابع تقاضای تخمین زده‌شده و ضرایب به دست آمده، کلیه‌های قیمتی برای در بخش خانگی - تولیدی 0400 - برآورد شده است. وی کلیه تقاضا برای نسبت به تولید ناخالص داخلی را در بخش خانگی نیز 0300 محاسبه نموده است. کلیه‌های قیمتی و متقاطع تقاضای برای در هر دو حالته، کوچکتر از یک برآورد شده و افزایش سهم مخارج برای افزایش یک درصدی قیمت واقعی برق، به میزان 0480 درصد به دست آمده است. در مطالعه خوشن سیما (1382) برای تخمین تقاضای حامل‌های غاز طبیعی، برق و فرآورده‌های نفتی با روش رگرسیون‌ها به‌منظور نام‌برد انتخاب شده است و نتایج به دست آمده نیز حاکی از بودن ترکیب فرآورده‌های نفتی و برق می‌باشد. این نتیجه در مطالعه شاهمرادی و هنروردی (1398) نیز تایید شده است.

در مطالعه حاضر ضمن برآورد سهم خانوار و سهم فعالیت‌های تولیدی از حساب‌های تقاضای برق، میزان حساب‌های فعالیت‌های تولیدی به‌منظور تغییر در نسبت نهاده‌های تولیدی (اثر مقداری)، اثر تغییر در برخی (اثر جانشینی) و اثر تخصیص مجدد نتیجه می‌گردد. به علاوه اثر جانشینی (به تفکیک سهم هر فعالیت از کل اثر جانشینی فعالیت‌های تولیدی) و اثر مقدار برای فعالیت‌های تولیدی نیز ارائه گردیده است.

3 - معرفی مدل و داده‌ها

در تحقیق حاضر یک تحلیل مقایسه‌ای است انجام خواهد شد. به‌منظور تصور اولیه اقتصاد با تصویر اقتصاد پس از افزایش قیمت برخ مقایسه‌های خواهد شد. سپس کلیه نقش‌آمیزی برخ به اجزای آن تفکیک می‌شود. حاکی از اینکه مدل تعادل عمومی محاسبه‌پذیر بهره‌گرفته می‌شود. این مدل در گرینده9 فعالیت تولیدی، دولت، بخش خارجی و همجین

1. Shahmoradi & Honarvar
خانواره‌هاست. فرض می‌شود که فعالیت‌های تولیدی به دنبال حداکثر سازی هزینه بر اساس قیمت‌ها داده شده است. سپس به این ترتیب سطح عرضه محصول، صادرات و همچنین نفاذ از منابع و سرمایه برای تعیین می‌کنند. با علاوه بر فرض شده است، حداکثر سازی مطلوبیت مقدار به محدودیت بودجه‌های است. از این طریق سطح نفاز قیمت‌های خانواره‌ها از کالاهای و خدمات داخلی و وارداتی تعیین می‌شود. تابع مطلوبیت خانواره‌ها یک تابع مطلوبیت جزئی مستقیم بر اساس درآمد و همچنین بردار قیمت کالاهای و خدمات است. برای سادگی تحلیل فرض شده است تراز برداشت همچنین بودجه دولت در موانع قرار دارد.

فرض شده است توالی تولید و مطلوبیت از فرم ساختار ای یادهای 1 کشش جانشینی ثابت (CES) بهره گرفته‌اند. در تحقیقات حاضر ساختار تولید و مصرف، مطالب مطلوبیت منظر و سرمایه (1390) در نظر گرفته شده است. در این الگو متریک‌های درون‌زا و خارج‌زا در سطح سطحی و اکثریت وارداتی، نرخ ارز، دستمزد و بدهگاه سرمایه‌ای، شاخص‌های سطح فعالیت (سطح تولید، عرضه، صادرات و نفاذ از منابع) و شاخص‌های رفاه (سطح مطلوبیت، سطح درآمد و سطح نفاز قیمت از کالاهای و خدمات) تضمین شدند. تنها در این الگو متریک‌های درون‌زا بر اثر تعامل کارگزاران اقتصادی در پازارها تعیین می‌شود.

متغیرهای برون‌زا در مدل تعادل عمومی توزیع در دو دسته کشش‌های جانشینی و همچنین پارامترهای به‌طور خاص، به‌صورت برون‌زا تعیین می‌شوند. معمولاً سه روش برای تعیین کشش‌های جانشینی وجود دارد. در روش اول که روش مداوم در مطالعات تعادل عمومی است، مقدار کشش بر اساس سایر مطالعات انتخاب می‌شود و سپس دانستهای از مقدار مختلف برای تحلیل حساسیت نتایج به کار گرفته می‌شود. در روش دوم این کشش‌ها به‌عنوان میانگین انتخاب می‌شوند. در نهایت در روش سوم لازم است همه پارامترهای کشش‌های جانشینی تخمین زده شود. روش سوم به دلیل نیاز به داده‌های گسترده‌تر فعالیت‌های تولیدی به صورت سری زمانی، نیاز به داده‌های گسترده‌تر فعالیت‌های تولیدی به صورت سری زمانی،

1. Nested Structure
2. Constant Elasticity of Substitution
3. میان‌ریزی شرایط اساسی به کار رفته در مدل تعادل عمومی شامل تاییدیه پذیرای، توزین درآمد و شرط سود صفر برای هر بخش نیز در مطالعات منظر و همکاران (1390) ارائه شده است. همچنین برای اطلاعات بیشتر در زمینه مدل‌سازی انتظاری در همکاران (Küster, Ellersdorfer, & Fahl, 2007) مراجعه نمایید.

جدول 1: تعادل عمومی محاسبه‌پذیر ب ح (2007)
تجزیه کوشش قیمتی تقاضای برق در ایران: تحلیل تعادل عمومی محاسبه‌پذیر

معمولاً با غیر ممکن است با هزینه بسیار بالایی دارد. در مدل این تحقیق کوشش جانشینی در لایه ارزش افزوده (کار و سرمایه)، کوشش جانشینی در لایه انرژی (برق و لیه سایر حامل‌ها) و کوشش جانشینی در لایه نهاده‌ها و استعمار موجود دارد که بین این نوع نیز یک پارامتر جانشینی تعیین می‌شود.1 کوشش‌ها بر اساس مطالعه منظور و همکاران (1390) تعبیه شده‌اند و برای تحلیل حسابی، دامنه‌ای از مقادیر کوشش مورد بررسی قرار برخواهد گرفت. به دلیل فقدان اطلاعات در خصوص این پارامتر باید سطوح مختلفی از کوشش جانشینی در نظر گرفت. به بیان دقیق‌تر، فرض خواهد شد کوشش جانشینی بین نهاده برق و لیه انرژی‌های فیزیکی (سایر حامل‌های انرژی) مقادیر 0، 0.1، 0.2، 0.3، 0.4، 0.5 به خود بگیرد. هر چند این مقادیر فرضی هستند اما با توجه به مطالعات انجام شده در سایر کشورها و همچنین مطالعات کوشش قیمتی انرژی در ایران، انتظار می‌رود مقادیر کوشش جانشینی بین برق و سایر حامل‌های انرژی در همین دامنه قرار داشته باشد.

1 با توجه به اینکه محاسبات انجام شده براساس این پارامتر هستند، این پارامتر به‌عنوان یک پارامتر مهم در فرآیند کالیبراسیون و بر اساس اطلاعات مربوط به تصویر اقتصاد در سال پایه محاسبه شده‌اند. در فرآیند شیب‌سازی لاژ است مدل طراحی شده بر اساس داده‌های سال پایه کالیبره شود. به عبارت دیگر پرا آنکه مدل طراحی شده قادر باشد داده‌های سال پایه را باز تولید نماید، لازم است پارامتری سهم بر اساس داده‌های سال پایه محاسبه شوند. کالیبراسیون مدل تعادل عمومی با بر مبتلای جداول داده استناده انجام می‌شود یا بر اساس ماتریس حسابداری اجتماعی صورت می‌پذیرد. این دو ساختار به گونه‌ای تنظیم شده‌اند که تعاملات بخشی غلیظی‌های مختلف را با تفسیر در بر دارد و تصویر تفصیلی از روابط اقتصادی بخش‌های مختلف ارائه می‌کند. مدل تحقیق حاضر بر مبانی ماتریس داده‌های خرد ارزی وزارت نیرو طراحی شده است. این ماتریس هم یک شکل

2 با توجه به اینکه محاسبات انجام شده براساس این پارامتر هستند، این پارامتر به‌عنوان یک پارامتر مهم در فرآیند کالیبراسیون و بر اساس اطلاعات مربوط به تصویر اقتصاد در سال پایه محاسبه شده‌اند. در فرآیند شیب‌سازی لاژ است مدل طراحی شده بر اساس داده‌های سال پایه کالیبره شود. به عبارت دیگر پرا آنکه مدل طراحی شده قادر باشد داده‌های سال پایه را باز تولید نماید، لازم است پارامتری سهم بر اساس داده‌های سال پایه محاسبه شوند. کالیبراسیون مدل تعادل عمومی با بر مبتلای جداول داده استناده انجام می‌شود یا بر اساس ماتریس حسابداری اجتماعی صورت می‌پذیرد. این دو ساختار به گونه‌ای تنظیم شده‌اند که تعاملات بخشی غلیظی‌های مختلف را با تفسیر در بر دارد و تصویر تفصیلی از روابط اقتصادی بخش‌های مختلف ارائه می‌کند. مدل تحقیق حاضر بر مبانی ماتریس داده‌های خرد ارزی وزارت نیرو طراحی شده است. این ماتریس هم یک شکل
تغییر یافته از ماتریس حسابداری اجتماعی است اطلاعات مفیدی از بازار انرژی و همچنین بازار برق در بر دارد که در تحلیل حاضر مفید خواهد بود. ۱

4- مبنای نظری «تکنیک تجزیه حساسیت قیمتی» تفاوتی کل برق

«تکنیک تجزیه حساسیت قیمتی» یک تکنیک نوین در مطالعات تعادل عمومی است. به همین منظور برای آشنايی بیشتر علاقمندان به این مباحث، در این قسمت مبانی نظری «تکنیک تجزیه کشش» معرفی شده است. همچنین در این بخش به بررسی از فروضی که مدل تحقیق بر اساس آن بناده است اشاره شده شده در مدل تحقیق حاضر برای بررسی دقیق تر تطبیقات صورت گرفته در فعالیت‌های مختلف، تفاوت‌های برق به بانگه‌ها اصلی شامل تفاوت‌های واسطه‌ای و تفاوت‌های نهایی خانوارها و نهادها تقسیم می‌شود. شرط تعادل در بازار برق به صورت زیر خواهد بود:

\[E = E_h + E_s \] (1)

\(E_h \) مجموع تفاوت‌های فعالیت‌های تولیدی از نهاده برق، \(E_s \) که در آن \(E \) نمایانگر عرضه کل برق، \(E_h \) مجموع تفاوت‌های برق خانوارها و نهاده‌هاست. در ادامه فرم تابعی تفاوت‌های خانوارها و تولید کنندهان از نهاده برق بیان شده و سپس چگونگی تفکیک کشش با کمک آنها تبیین خواهد شد.

4-1- تقاضای برق از سوی فعالیت‌های تولیدی

میزان تقاضای برق به عنوان یک نهاده از سوی فعالیت‌های تولیدی صورت می‌پذیرد. رفتار بهبودیابی تولید کنندهگان تعیین کننده میزان تقاضای آنها از نهاده‌هاست. همان طور که گفته شد، تولید کننده‌ها به دنبال حداکثر سایزی هزینه و بهبودیابی تولید هستند. از این رو برای استخراج تابع تقاضای برق فعالیت‌های تولیدی، نیازمند بررسی ناب هزینه فعالیت‌ها می‌باشیم. توابع تولید لایه‌ای

1 برای توضیح بیشتر بر مطالعه شاه‌مرادی و همکاران (۱۳۸۸) و جوهر کیمی (۱۳۸۸).
تهیه کشش قیمتی نقش‌بازی برق در ایران: تحلیل تعداد عمومی محاسبه‌بندی

هر فعالیت، تابعی از نیروی کار و سرمایه، نهاده‌های و استراتژی و انرژی در نظر گرفته شده است. با فرض شاخص انرژی تولید، می‌توان تابع تولید فعالیت آرا به صورت زیر بیان نمود:

\[Q_j = F_j(L,K) + G_j(I) + D_j(EL,E) \]

\[D_j(E,NE) = \alpha_{en,j} \left[\theta_{el,j} \left(\frac{(1 - \theta_{el,j})^{\delta}}{\delta} \right)^{\frac{\delta - 1}{\delta}} \left(E - \text{нейд} \right) \right] \]

\[\alpha_{en} \] که در آن \(I, K, L \) به ترتیب نهاده‌های نیروی کار، سرمایه و نهاده‌های و استراتژی، \(\theta_{el,j} \) معروف به انرژی در تولید فعالیت \(j \) به سهم نهاده‌های برگزیده که از کل نهاده انرژی، \(E \) و \(NE \) به نهاده انرژی به جز برق است. تابع هزینه واحد به دست آمده از تابع تولید نیز به صورت زیر می‌باشد:

\[C_j = f_j(P_i, P_k) + g_j(P_i) + d_j(P_{el}, P_e) \]

\[d_j(P_{el}, P_e) = S_{en,j} \left[\theta_{el,j} (P_{el})^{1-\delta} + (1 - \theta_{el,j}) (P_e)^{1-\delta} \right] \]

این تابع بر حسب قیمت‌های بازاری برق، سوخت‌های فسیلی (نهاده انرژی به جز برق)، نهاده و استراتژی، نیروی کار و سرمایه به دست آمده است. با فرض اینکه تابع هزینه بنگاه به صورت فاقد باشد و با فرض بهینه‌ای رفتار تولید کننده می‌توان تابع تقاضای برای برق را استخراج نمود. بر اساس قواعد اقتصاد خرد و با استفاده از ال شفایدار تابع تقاضای برای فعالیت آرا به صورت زیر خواهد بود:

\[\textit{Mysen, 1991 or Uzawa, 1962 or Grepperud & Rasmussen, 2004} \]

\[\textit{Shephard’s Lemma} \]
که در این تابع، AL بیانگر سطح فعالیت می‌باشد.

4-2- تفاشایی برق خانوارها

خانوارها با مصرف کالاها و خدمات به دنبال حداکثر کردن مطلوبیت خود هستند. ساختار مطلوبیت به شکل فرم لاهاهای تابع با کشش جانشینی تابع\(^1\) (CES) در نظر گرفته شده است که در آن خدمات حاصل از نهاده برق (E) و خدمات حاصل از سایر حامل‌های انرژی (NE)، لاایه را تشکیل می‌دهد و در لاای بالایی انرژی با کالاها و خدمات غیر انرژی \((EN)\) ترکیب شده و مطلوبیت کل خانوار را تشکیل می‌دهد.

\[
d_j = AL_j \cdot \frac{\partial \tilde{e}_j}{\partial p_{el}} = \theta_{el} \cdot AL_j \cdot S_{e_{m,j}} \left[\frac{(\theta_{el} (P_{el})^{\frac{1-\phi}{\phi}} + (1-\theta_{el})(P_{el})^{\frac{1-\phi}{\phi}})^{\frac{1-\phi}{\phi}}}{p_{el}} \right]^{\frac{\phi}{\phi-1}}
\]

در این تابع \\(\mu\) به ترتیب سهم کالاها و خدمات غیر انرژی در سبد خانوار، و \(\alpha_i\) کиш جانشینی کالاها و خدمات غیر انرژی، \(\varphi\) کالای بام از کل کالاها و خدمات غیر انرژی و سهم بر از کل کالاها و خدمات انرژی در سبد مصرفی خانوار است.

از تابع مطلوبیت فوق، تابع مطلوبیت غیر مستقیم به دست می‌آید، که با توجه به "اتحاد روز\(^2\)"،

تابع تفاشایی برق خانوارها به صورت زیر از آن استخراج می‌شود:

\[
E_{el} = WL \cdot \beta_{el} \cdot (1-\mu) \left[\frac{(\beta_{el} (P_{el})^{\frac{1-\varphi}{\varphi}} + (1-\beta_{el})(P_{el})^{\frac{1-\varphi}{\varphi}})^{\frac{1-\varphi}{\varphi}}}{p_{el}} \right]^{\frac{\varphi}{\varphi-1}}
\]

در معادله فوق، WL نیز نمایانگر سطح رفاه می‌باشد.

1. Constant Elasticity of Substitution
2. Roy's Identity
4-3 - روش تجزیه تقاضای برق

برای تجزیه تغییرات تقاضا به دنبال افزایش قیمت برق، ابتدا نرخ تغییر تقاضای کل برق از محاسبه
دیفرانسیل کلی نسبت (1) و تقسیم طرفین بر E به صورت زیر به دست می‌آید:

\[\psi = \frac{E_s}{E} + \frac{E_h}{E} \]

(6)

که در آن \(E \) نرخ تغییر در تقاضای کل برق \(E_s \), \(\frac{dE}{E} \) نرخ تغییر در تقاضای نهاده برق از جانب
فعالیت‌های تولیدی و \(E_h \) نرخ تغییر در مصرف برق توسط خانوارهای است. در ادامه به بررسی
مولفه‌های تشکیل دهنده نرخ تغییر تقاضای برق فعالیت‌های تولیدی می‌پردازیم. کل تقاضای نهاده
برق از حاصل جمع تقاضای نهاده برق همه فعالیت‌های تولیدی به دست می‌آید:

\[E_s = \sum_j E_j = \sum_j Z_j E V_j \]

(7)

که در آن \(E \) کل نهاده‌های مورد استفاده فعالیت تولیدی زام به صورت تجمیعی بوده و
\(Z_j E \) نرخ نهاده‌های برق در آن فعالیت از کل نهاده‌های همین صنعت است. به عبارت دیگر:

\[dE_s = \sum_j V_j \cdot dZ_j E + \sum_j Z_j E \cdot dV_j \]

(8)

خواهد بود. با استفاده از فرمول (7) تغییر در \(E_s \) را می‌توان به صورت زیر بیان نمود:

\[E_s = \sum_j \frac{E_j}{E} Z_j E \left(V_j \right) = Z_j E + V_j + COV \left(\frac{Z_j E}{E}, V_j, \lambda_j V \right) \]

(9)

برای محاسبه نرخ تغییر، دو طرف را به \(E_s \) تقسیم نموده و با مرتب نمودن داریم:

\[\lambda_j V = \frac{\lambda_j V}{V_j}, V_j. \]

\[V_j = \frac{Z_j E}{E} \] است.

در این معادله \(\lambda_j V \) برای متوسط و \(Z_j E = \frac{E_s}{V_j} \) است.

\[\lambda_j V \] میانگین ونی نرخ تغییر برق‌بری صنایع است.

کوواریانس مورد نظر نیز کوواریانس وزنی بین برق‌بری و نرخ تغییر کل نهاده‌ها را با وزنهای
اندازه می‌گیرد.
بدین ترتیب تغییر نسبی در تقاضای نهاده بر قر به سه عامل تجزیه گرده است:

1. اثر جانشین (\(\alpha\)) که نشان دهنده تغییرات تناسبی در میانگین وزنی شدت مصرف بر قر در فعالیت‌های تولیدی است.

2. اثر مقدار \(\frac{1}{N}(\text{cov}(Z^E_i, V^P_j; \lambda^P_j))\) که رشد متوسط تقاضای نهاده‌ها به صورت تجمع شده - را نشان می‌دهد.

3. اثر تخصیص مجدد \(\frac{1}{N}(\text{cov}(Z^E_i, V^P_j; \lambda^P_j))\) که هر اثر تقاضای نهاده‌ها در فعالیت‌های تولیدی را نشان می‌دهد.

برای محاسبه عناصر موتر در کشش قیمتی لازم است تغییرات تقاضای بخش‌ها و خانوارها از مدل تعادل عمومی محاسبه شود. به عبارت دیگر این مدل با داده‌های سال پایه کالیبره می‌شود. سپس مجدداً مدل تعادل عمومی با اعمال سیاست افزایش قیمت مورد محاسبه قرار گرفت. در این مرحله میزان تغییر تقاضا بر اساس تغییر قیمت محاسبه خواهد شد. پس از محاسبه میزان تغییر تقاضای بر قر اثر افزایش قیمت، می‌توان عوامل موتر بر کشش را با دقت بیشتر مورد تحلیل و بررسی قرار داد.

5. نتایج مدل

با استفاده از شیوه معرفی شده در این مقاله، کشش قیمتی کل تقاضای بر قر ابتدا به تفکیک بخش خانگی و فعالیت‌های تولیدی تجزیه و سپس حسابیت تقاضای بر قر فعالیت‌های تولیدی نسبت به تغییر قیمت آن نیز به اثر جانشینی (برق بری) اثر مقدار و اثر تخصیص مجدد تجزیه شد. نتایج اجرای مدل نشان می‌دهد که در کوتاه مدت (با فرض کشش جانشینی) صفر میان نهاده بر قر و انرژی فسیله‌ای با افزایش 100 درصدی قیمت نهاده بر قر، تقاضای بر قر تنها به میزان 23/78 درصد کاهش می‌یابد. به عبارت دیگر، در کوتاه مدت کشش قیمتی نهاده بر قر در این مدل کمتر از 0/9 برآورد گرده است. در این حالت تقاضای خانوارها حدود 1/47 درصد کاهش یافته که با توجه به سهم 0/22 تقاضای خانوار از کل افزایش مصرف بر قر، حدود 32/01 واحد درصد از کاهش

1. Scale Effects
2. Re-allocation Effects
تجزیه کشش قیمتی تقاضای برق در ایران: تحلیل تعداد عمومی محاسبه‌بدین

تقاضای برق مربوط به خانواره‌هاست. این در حالی است که با توجه به کاهش 84% درصدی تقاضای نهاده برق در فعالیت‌های تولیدی و سهم 78% آنها از کل ارزش مصرف برق، حدود 85% واحد درصد نیز سهم فعالیت‌های تولیدی است.

جدول 1: سهم خانواره‌ها و فعالیت‌های تولیدی از کاهش تقاضای برق (معادله (6)) - واحد درصد

<table>
<thead>
<tr>
<th>بلندمدت</th>
<th>میانمدت</th>
<th>کوتاهمدت</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/5</td>
<td>0/4</td>
<td>0/3</td>
</tr>
<tr>
<td>0/2</td>
<td>0/1</td>
<td>0</td>
</tr>
</tbody>
</table>

تقاضای برق / کشش جانشینی

درصد تغییرات تقاضای برق خانواره (\(\dot{E}_H \))

(1)

سرم خانواره‌ها از کل تغییرات تقاضا (\(\dot{E}_H \))

درصد تغییرات تقاضای برق فعالیت‌های تولیدی (\(\dot{E}_V \))

(2)

سرم فعالیت‌های تولیدی از کل تقاضای برق (\(\dot{E}_V \))

(3)

درصد تغییرات در تقاضای کل

\(\{\dot{E}_H + \dot{E}_V\} \)

مطلب: محاسبات تحقیق

همان‌گونه که در جدول (1) ملاحظه می‌شود، با افزایش کشش جانشینی بین نهاده برق و انرژی های فسیلی مقدار کشش قیمتی تقاضای برق نیز افزایش می‌یابد. به عبارت دیگر افزایش قیمت نهاده برق در بلندمدت باعث کاهش شدیدتر در تقاضای برق از جنب خانواره و فعالیت‌های تولیدی می‌شود که در این میان تفاوت تقاضای فعالیت‌های تولیدی در بلندمدت تاثیر بیشتری می‌پذیرد. به گونه‌ای که در بلندمدت (با کشش جانشینی 0% میان نهاده برق و انرژی فسیلی) از کل 32 درصد کاهش در تقاضای برق به واسطه افزایش قیمت، سهم بنگاه‌ها حداکثر 25/7 واحد درصد و سهم خانوارها حدود 6/5 واحد درصد می‌باشد.

نکته قابل توجه این است که درصد تغییر در تقاضای نهاده برق توسط فعالیت‌های تولیدی که در جدول (1) آورده شده است، درآیند درصد تغییر نهاده برق در همه فعالیت‌های تولیدی است. نتایج تغییر در تقاضای نهاده برق به تفکیک فعالیت‌های تولیدی در جدول (ب) در پوست ارائه شده است.
چنین گونه که در بخش 4 ذکر شد، کاهش تفاوت‌های نهاده بر ق در فعالیت‌های تولیدی با می‌توان به سه اثر جانشینی (برق برق) (\(Z^E\)), اثر میقاس (\(V^E\)) و اثر تخصص مجدد تقسیم نمود. نتایج واکنش فعالیت‌های تولیدی به افزایش قیمت نهاده بر ق در جدول (2) تجزیه شده است.

جدول 2: تجزیه حساسیت کیفیتی تفاوت‌های بر ق در فعالیت‌های تولیدی (معادله (6))

<table>
<thead>
<tr>
<th>بندبندی</th>
<th>میان مدت</th>
<th>کوتاه مدت</th>
<th>مقدار کش جانشینی</th>
<th>اثر میقاس ((V^E))</th>
<th>اثر تخصص مجدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/5</td>
<td>0/4</td>
<td>0/3</td>
<td>0/2</td>
<td>0/1</td>
<td>0</td>
</tr>
<tr>
<td>-0/97</td>
<td>-0/94</td>
<td>-0/96</td>
<td>1/02</td>
<td>-1/0/06</td>
<td>0</td>
</tr>
<tr>
<td>-0/1</td>
<td>-0/11</td>
<td>-0/11</td>
<td>-0/12</td>
<td>-0/12</td>
<td>-0/12</td>
</tr>
</tbody>
</table>

توضیح: محاسبات تحقیق در کوتاه مدت با کشش جانشینی صفر بین نهاده بر ق و انرژی فیزیکی از کل کاهش در تفاوت‌های نهاده بر ق توسط فعالیت‌های تولیدی، 63/5 و 12/0 واحد درصد مربوط به اثر جانشینی (برق برق) است و اثر میقاس و تخصص مجدد به ترتیب حدود 1/0 و 1/0 واحد درصد از کل کاهش را تشکیل می‌دهد.

همان‌گونه که ملاحظه شد، تغییر نسبی در متوسط برق برای فعالیت‌های تولیدی یا به عبارت دیگر، اثر جانشینی (برق برق)، در مقایسه با اثر میقاس و اثر تخصص مجدد، بالاترین میزان تاثیر در حساسیت کیفیتی تفاوت‌های برق فعالیت‌های تولیدی را به خود اختصاص داده است. این اثر با افزایش کشش جانشینی بین نهاده بر ق و انرژی فیزیکی به شدت افزایش می‌یابد. به عبارت دیگر اثر جانشینی (برق برق) در بندبندی بیشتر از کوتاه مدت می‌باشد. این در حالی است که تغییر نسبی در کل نهاده‌های تجربه شده (اثر میقاس) و همچنین اثر تخصص مجدد با تغییر کشش جانشینی تقریباً ثابت بوده و تغییر چندانی نداشته است.

با توجه به اهمیت نقش اثر جانشینی (برق برق) در حساسیت کل تفاوت‌های بر ق در فعالیت‌های تولیدی، در جدول (3) سهم هر یک از فعالیت‌های تولیدی از اثر جانشینی (\(Z^E\)) کل فعالیت‌های تولیدی - محاسبه شده در جدول (2) - تعیین شده است.
تجزیه کشش قیمتی تقاضای برق در ایران: تحلیل تعداد عمومی محاسبه‌پذیر

جدول ۳: سهم هر یک از فعالیت‌های تولیدی (۳) از اثر جانشینی (برق‌پری) کل فعالیت‌های تولیدی

واحد درصد

<table>
<thead>
<tr>
<th>کشش جانشینی</th>
<th>کشاورزی</th>
<th>خوزو</th>
<th>گاز</th>
<th>جمع کل (اثر جانشینی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بندمددت</td>
<td>0/5</td>
<td>0/4</td>
<td>0/3</td>
<td>0/2</td>
</tr>
<tr>
<td>سهم برق (درصد)</td>
<td>4/82</td>
<td>3/94</td>
<td>8/89</td>
<td>1/04</td>
</tr>
<tr>
<td>فنک و کالی‌ها</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
<td>0/02</td>
</tr>
<tr>
<td>شرکت‌های غیر فلزی</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
</tr>
<tr>
<td>خدمات فنی و خرده‌فرشی</td>
<td>0/68</td>
<td>0/68</td>
<td>0/68</td>
<td>0/68</td>
</tr>
<tr>
<td>خدمات</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
<td>0/18</td>
</tr>
<tr>
<td>جمع کل (اثر جانشینی)</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
</tr>
</tbody>
</table>

ملاحظه: متابلات تحقیق

همان گونه که در جدول (۳) ملاحظه می‌شود، فعالیت‌های «خدمات عمده‌فرشی و خرده‌فرشی» و «فلزات و کالی‌های غیر فلزی» بیشترین نقش را در اثر جانشینی (برق‌پری) به عهده دارند. به گونه‌ای که در کوتاه‌مدت این دو فعالیت از کل ۶۳/۵ واحد درصد اثر جانشینی (برق‌پری)، به ترتیب ۲/۲ و ۱/۸۴ واحد درصد اثر جانشینی (برق‌پری) را به خود اختصاص داده‌اند. در بلندمدت و با افزایش کشش جانشینی، فعالیت «فلزات و کالی‌های غیر فلزی» نسبت به فعالیت «خدمات عمده‌فرشی و خرده‌فرشی» تاثیر بزرگ‌تری در کاهش تقاضای برق ایفا می‌نماید. این مطالعه لزوم استفاده از سیاست‌های تبعیض قیمتی در فعالیت‌های مختلف تولیدی را مناسب با اهداف سیاست‌گذاری‌های وابسته کرد. نتایج مدل در خصوص اثر میزان فعالیت‌های تولیدی به ایال افزایش ۱۰۰ درصدی در قیمت برق با کشش‌های مختلف تقاضای در جدول (پ) در پیوست ارائه شده است.

نتیجه‌گیری

کشش‌های قیمتی تقاضایی یکی از عوامل تغییر کننده در انتخابی سیاست‌گذاری‌های اقتصادی هستند. کاپیبرد و سیاست‌های قیمتی در سیاست‌گذاری اقتصادی باعث شده است بسیاری از مطالعات اقتصادی به تخمین کشش‌های قیمتی تقاضایی کل در مورد محصولات مختلف اختصاصی
یابند. اما سیاست‌گذاری بخشی و منطقه‌ای اجای می‌کند که کشش‌های قیمتی تقاضایی کل به اجرای مختلف آن تجلی شوند. در این تحقیقات در چارچوب مدل تعادل عمومی بیشتر، چگونگی محاسبه سهم خانوارها و فعالیت‌های تولیدی از کشش‌های قیمتی کل تقاضایی برق و همچنین نحوه تجربه اثرات کشش قیمتی تقاضایی برق در فعالیت‌های تولیدی به «اثر مقیاس»، «اثر جانشینی (برق بری)» و «اثر تخصصی مجدد» معرفی شد. اجرای مدل نشان می‌دهد که بر فرض افزایش 100 درصدی قیمت برق نتایج ذیل حاصل شده است:

1. میزان کاهش تقاضایی برق از جنگ خانوارها به نسبت کوچک‌تر بوده و با سهم به نسبت کوچک خانوارها از مصرف برق، این بخش سهم کاهشی در کل کاهش تقاضایی برق ایفا می‌کند.

2. و این کشش تقاضایی برق نسبت به قیمت آن در فعالیت‌های تولیدی، در بلندمدت به طور قابل ملاحظه‌ای افزایش می‌یابد (حدوداً ۵۵ درصد تاکواده، ۵۰ درصد در بلندمدت نیز هم چنان تقاضایی برق صندل نسبت به قیمت کم‌تر کشش می‌باشد.

3. از میان فعالیت‌های تولیدی، فعالیت‌های «خدمات عمده‌فروشی و خرده‌فروشی» و «فدراس و کانی‌های غیر فلزی» بیشترین نقش را در اثر جانشینی (برق بری) دارند. این مطالعه در بلندمدت نیز به همین منوال است. از این رو، اهمیت بیشتر به این دو فعالیت می‌تواند سیاست‌گذار را در نظر به اهداف خوراکی و سازند. بیشتر قیمتی میان فعالیت‌های تولیدی و خانوارها و حتی بیشتر قیمتی بین فعالیت‌های تولیدی، می‌تواند سیاست‌گذار را در رساندن به اهداف خود موفق سازد.

4. از تجزیه کشش قیمتی تقاضایی برق در فعالیت‌های تولیدی، نتیجه‌گیری می‌گردد که تغییرات شدت مصرف برق در یک از فعالیت‌های تولیدی است که اصطلاحاً آن را «اثر جانشینی (برق بری)» می‌نامیم. هر چند در بلندمدت اثر مقیاس و اثر تخصص مجددی ندارند، اما اثر جانشینی (برق بری) در بلندمدت به شدت افزایش می‌یابد؛ به عبارت دیگر اثر جانشینی (برق بری) در بلندمدت بیشتر از کوتاه‌مدت می‌باشد.
در مجموع می توان گفت آگر هدف سیاست قیمتی افزایش درآمد باشد، افزایش تعرفه بر ق خانگی می تواند گزینه مناسبی باشد. اما آگر هدف کاهش تفاوت باشد، این سیاست چندان مؤثر نخواهد بود. به عبارت دیگر آگر سیاست گذاران به دنبال کاهش تفاوت بر ق باشد، افزایش قیمت بر ق فعالیت یا تولیدی سیاست موثری خواهد بود. همچنین آگر سیاست گذاران به دنبال کاهش تفاوتی سایر حامل های انرژی (انرژی های فسیلی) و کاهش آلودگی هوا باشد، کاهش قیمت بر ق یک سیاست اثر بخش است. در این بین تغییر تعرفه بر ق برای خدمات و فلزات مؤثر است.
منابع و مآخذ

الف: منابع و مآخذ فارسی

1. خوش سیما، رضا (1382). "پروسه تابع تفاصلی انرژی در بخش خانگی، پایان نامه کارشناسی ارشد، دانشگاه تهران. شاهرودی، اصغر. حقیقی، ایمان، زاهدی، راضیه، و آقابانی، محمد ابراهیم (1388). "تحلیل تاثیر سیاست‌های قیمتی در بخش‌های اقتصادی (با تمرکز بر آب و انرژی); ویکرده تعادل عمومی محاسبه‌پذیر". گزارش نهایی طرح تحقیقاتی وزارت نیرو، ایران.

2. فتح ام. زاده اقدم، رضا (1373). تفاصلی انرژی خانگی، پایان نامه کارشناسی ارشد، دانشگاه تهران. فخرآیی، حمید (1371). پیش‌بینی تفاصلی انواع انرژی در بخش‌های مصرف کننده، مؤسسه عالی پژوهش در برنامه‌ریزی و توسعه، تهران.

4. وزارت نیرو (1389). آمار و نمودارهای انرژی در ایران و جهان 1387-2008، وزارت نیرو.

ب: منابع و مآخذ لاتین

پیوست

جدول (پ 1): درصد تغییر در تفاوت‌های برق به تفکیک فعالیت‌های تولیدی به ازای افزایش 100 درصدی قیمت برق

<table>
<thead>
<tr>
<th>کمیته جانشینی</th>
<th>بلندمدت</th>
<th>میانمدت</th>
<th>کوتاهمدت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشاورزی</td>
<td>-30/38</td>
<td>-25/67</td>
<td>-15/32</td>
</tr>
<tr>
<td>نفت و نفت‌وگاز</td>
<td>-32/99</td>
<td>-28/98</td>
<td>-21/23</td>
</tr>
<tr>
<td>خوراک و پوشاک</td>
<td>-30/14</td>
<td>-25/31</td>
<td>-14/65</td>
</tr>
<tr>
<td>فرآورده‌های نفتی</td>
<td>-30/07</td>
<td>-24/97</td>
<td>-13/50</td>
</tr>
<tr>
<td>فلزات و کانی‌های غیر فلزی</td>
<td>-34/52</td>
<td>-30/68</td>
<td>-22/41</td>
</tr>
<tr>
<td>صنعت</td>
<td>-30/40</td>
<td>-25/66</td>
<td>-15/23</td>
</tr>
<tr>
<td>خدمات</td>
<td>-32/59</td>
<td>-28/60</td>
<td>-15/46</td>
</tr>
<tr>
<td>خدمات</td>
<td>-29/89</td>
<td>-25/19</td>
<td>-14/86</td>
</tr>
</tbody>
</table>

منبع: محاوره‌های تحقیق

جدول (پ 2): اثر مقیاس به تفکیک فعالیت‌های تولیدی به ازای افزایش 100 درصدی قیمت برق

<table>
<thead>
<tr>
<th>کمیته جانشینی</th>
<th>بلندمدت</th>
<th>میانمدت</th>
<th>کوتاهمدت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشاورزی</td>
<td>-1/44</td>
<td>-1/32</td>
<td>-1/21</td>
</tr>
<tr>
<td>نفت و نفت‌وگاز</td>
<td>0/04</td>
<td>0/03</td>
<td>0/02</td>
</tr>
<tr>
<td>خوراک و پوشاک</td>
<td>-1/92</td>
<td>-1/85</td>
<td>-1/78</td>
</tr>
<tr>
<td>فرآورده‌های نفتی</td>
<td>-6/99</td>
<td>-6/95</td>
<td>-6/90</td>
</tr>
<tr>
<td>فلزات و کانی‌های غیر فلزی</td>
<td>1/05</td>
<td>1/10</td>
<td>1/21</td>
</tr>
<tr>
<td>صنعت</td>
<td>-6/72</td>
<td>-5/60</td>
<td>-4/50</td>
</tr>
<tr>
<td>برق</td>
<td>-1/31</td>
<td>-1/28</td>
<td>-1/21</td>
</tr>
<tr>
<td>خدمات</td>
<td>-1/26</td>
<td>-0/23</td>
<td>-0/02</td>
</tr>
</tbody>
</table>

منبع: محاوره‌های تحقیق