Abunouri, A., Khanalipour, A., & Abbasi, J. (2009). The Effect of News on Exchange Rate Fluctuations in Iran: An Application of the ARCH Family. Business Journal, 50, 101-120. (In Persian)
Bayat, N. (2018). Forecasting the Exchange Rate Using Self-Organizing Ten-Recurrence Maps. Modern Economy and Business, 13, 55-84. (In Persian)
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. Transactions of the Association for Computational Linguistics, 5, 135-146.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., & Askell, A. (2020). Language Models Are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
Chan, S. W., & Chong, M. W. (2017). Sentiment Analysis in Financial Texts. Decision Support Systems, 94, 53-64.
Damiri, M., Saeedi, P., Didehkhani, H., & Abbasi, A. (2020). Modeling Exchange Rate Fluctuations with System Dynamics Approach. Financial Engineering and Securities Management, 11(43), 220-244. (In Persian)
Danielsson, S., & Gramer, A. (2023). Predicting Forex Rates Using Sentiment Analysis on Financial Articles. Journal of Behavioral and Experimental Economics, 103, 101-109.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint, arXiv:1810.04805.
Dharshing, S., Hille, S. L., & Wüstenhagen, R. (2017). The Influence of Political Orientation on the Strength and Temporal Persistence of Policy Framing Effects. Ecological Economics, 142, 295-305.
Farahani, M., Gharachorloo, M., Farahani, M., & Manthouri, M. (2021). Parsbert: Transformer-based Model for Persian Language Understanding. Neural Processing Letters, 53, 3831-3847.
Feuerriegel, S., & Prendinger, H. (2016). News-based Trading Strategies. Decision Support Systems, 90, 65-74.
Galperti, S., & Cerigioni, F. (2023). Listing Specs: The Effect of Framing Attributes on Choice. Journal of the European Economic Association, 7, 32-38.
Hashmi-Dizaj, A., Hazeri-Niri, H., & Pour-Vahdani, R. (2020). Comparing the Performance of Artificial Neural Network Models for Predicting the Exchange Rate in Iran. Biquarterly Scientific Journal of Economic Studies and Policies, 7(2), 53-80. (In Persian)
Heaton, J. (2016). An Empirical Analysis of Feature Engineering for Predictive Modeling. SoutheastCon 2016.
Jiménez-Jiménez, F., & Rodero-Cosano, J. (2023). Conditioning Competitive Behavior in Experimental Bertrand Markets Through Contextual Frames. Journal of Behavioral and Experimental Economics, 103, 101-109.
Josse, J., & Husson, F. (2012). Handling Missing Values in Exploratory Multivariate Data Analysis Methods. Journal de la société française de statistique, 153(2), 79-99.
Kahneman, D., & Tversky, A. (1979). Prospect theory. Econometrica, 47, 39-48.
Kapoor, A., Gulli, A., Pal, S., & Chollet, F. (2022). Deep Learning with TensorFlow and Keras: Build and deploy supervised, unsupervised, deep, and reinforcement learning models. Packt Publishing Ltd.
Khadaveisi, H., & Mollabahrami, A. (2012). Modeling and Forecasting Exchange Rates Based on Stochastic Differential Equations. Economic Research, 100(47), 129-144. (In Persian)
Khan, W., Daud, A., Khan, K., Muhammad, S., & Haq, R. (2023). Exploring the Frontiers of Deep Learning and Natural Language Processing: A Comprehensive Overview of Key Challenges and Emerging Trends. Natural Language Processing Journal, 100-126.
Khashee, M., Bijari, M., & Mokhatab-Rafiei F., (2012). Forecasting Exchange Rates Using Hybrid Models of Multilayer Perceptrons (MLPs) and Probabilistic Neural Classifiers (PNNs). Scientific Research Journal of Numerical Methods in Engineering, 32(1), 1-14. (In Persian)
Kühberger, A. (1998). The Influence of Framing on Risky Decisions: A meta-analysis. Organizational Behavior and Human Decision Processes, 75(1), 23-55.
Li, Y., & Yang, T. (2018). Word Embedding For Understanding Natural Language: A Survey. Guide to Big Data Applications, 83-104.
Liebmann, M., Orlov, A. G., & Neumann, D. (2016). The Tone of Financial News and the Perceptions of Stock and CDS Traders. International Review of Financial Analysis, 46, 159-175.
Liu, J., Li, T., Xie, P., Du, S., Teng, F., & Yang, X. (2020). Urban Big Data Fusion Based on Deep Learning: An Overview. Information Fusion, 53, 123-133.
Lopez-Lira, A., & Tang, Y. (2023). Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models. arXiv preprint, arXiv:2304.07619.
Lunsford, K. G. (2020). Policy Language and Information Effects in the Early Days of Federal Reserve Forward Guidance. American Economic Review, 110(9), 2899-2934.
Mansourigargari, H., & Khodavisi, H. (2019). Exchange Rate Forecasting: Comparing Logistics Growth Patterns with Competing Patterns. Economics and modeling, 10, 141-179. (In Persian)
Marzban, D. H., Javaheri, B., Behnam, & Akbarian. (2005). A Comparison Between Structural, Time Series and Neural Network Econometric Models for Forecasting Exchange Rates. Journal of Economic Research, 40(2). (In Persian)
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint, arXiv:1301.3781.
Morales, E. F., & Escalante, H. J. (2022). A Brief Introduction to Supervised, Unsupervised, and Reinforcement Learning. In Biosignal Processing and Classification Using Computational Learning and Intelligence (pp. 111-129). Elsevier.
Nargesian, F., Samulowitz, H., Khurana, U., Khalil, E. B., & Turaga, D. S. (2017). Learning Feature Engineering for Classification. IJCAI, 196-235.
Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2015). Text mining of News-headlines for FOREX Market Prediction: A Multi-layer Dimension Reduction Algorithm with Semantics and Sentiment. Expert Systems with Applications, 42(1), 306-324.
Nayak, A. S., Kanive, A. P., Chandavekar, N., & Balasubramani, R. (2016). Survey on Pre-processing Techniques for Text Mining. International Journal of Engineering and Computer Science, 5(6), 16875-16879.
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers. International Journal of Computer Applications, 175(4), 7-9.
Sarzynska-Wawer, J., Wawer, A., Pawlak, A., Szymanowska, J., Stefaniak, I., Jarkiewicz, M., & Okruszek, L. (2021). Detecting Formal Thought Disorder by Deep Contextualized Word Representations. Psychiatry Research, 304, 114-135.
Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-directional LSTM: a Deep Learning Approach. Fractal and Fractional, 7(2), 203.
Semiromi, H. N., Lessmann, S., & Peters, W. (2020). News Will Tell: Forecasting Foreign Exchange Rates Based on News Story Events in the Economy Calendar. The North American Journal of Economics and Finance, 52, 101-111.
Shilpa, B., & Shambhavi, B. (2021). Combined Deep Learning Classifiers for Stock Market Prediction: Integrating Stock Price and News Sentiments. Kybernetes, 52(3), 748-773.
Shirazi, Homayun, & Nasrallahi. (2014). Monetary Models and Exchange Rate Forecasting in Iran: From Theory to Empirical Evidence. Financial and Economic Policy Quarterly, 1(4), 5-24. (In Persian)
Shynkevich, Y., McGinnity, T. M., Coleman, S. A., & Belatreche, A. (2016). Forecasting Movements of Health-care Stock Prices Based on Different Categories of News Articles Using Multiple Kernel Learning. Decision Support Systems, 85, 74-83.
Singh, D., & Singh, B. (2020). Investigating the Impact of Data Normalization on Classification Performance. Applied Soft Computing, 97, 105-124.
Singh, J., & Gupta, V. (2016). Text Stemming: Approaches, Applications, and Challenges. ACM Computing Surveys (CSUR), 49(3), 1-46.
Sousa, M. G., Sakiyama, K., de Souza Rodrigues, L., Moraes, P. H., Fernandes, E. R., & Matsubara, E. T. (2019). BERT for Stock Market Sentiment Analysis. IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI).
Sun, A., Lachanski, M., & Fabozzi, F. J. (2016). Trade the Tweet: Social Media Text Mining and Sparse Matrix Factorization For Stock Market Prediction. International Review of Financial Analysis, 48, 272-281.
Tagvi, M., & Khodam, M. (2011). A Comparative Study of the Effectiveness of Currency Theories in Predicting Exchange Rate Changes in the International Currency Exchange Market. Financial Knowledge of Securities Analysis (Financial Studies), 9, 147-192. (In Persian)
Tversky, A., & Kahneman, D. (1981). The Framing of Decisions and the Psychology of Choice. Science, 211(4481), 453-458.
Villamil, L., Bausback, R., Salman, S., Liu, T. L., Horn, C., & Liu, X. (2023). Improved Stock Price Movement Classification Using News Articles Based on Embeddings and Label Smoothing. arXiv preprint, arXiv:2301.10458.
Yarmohammadi, M., & Mahmovand, R. (2015). Forecasting the Exchange Rate Using the Method of Analyzing the Set of Singular Values. Quarterly Journal of Applied Economics Studies in Iran, 18, 146-137. (In Persian)
Zaranjad, M., Feqh Majidi, A., & Rezaei, R. A. (2008). Forecasting Exchange Rate Using Artificial Neural Networks and ARIMA Model. Quantitative Economics (Economic Reviews), 19, 107-130. (In Persian).