پویایی‌‌های غیر خطی نرخ بازده ارز در ایران با استفاده از الگوهای غیرخطی بیزین

نوع مقاله : مقاله پژوهشی

نویسنده

دانشجوی دکتری دانشکده علوم اقتصادی و اجتماعی، دانشگاه بوعلی سینا همدان

10.22034/epj.2022.16230.2191

چکیده

نرخ ارز، معیار برابری پول رایج یک کشور در برابر پول کشوری دیگر و همچنین نشان‌دهنده سنجش وضعیت اقتصادی کشور در مقایسه با سایر کشورها است. در این مطالعه، از الگوهای غیر خطی بیزین به ‌منظور بررسی پویایی‌‌های غیر خطی نرخ ارز در ایران با تناوب ماهانه در بازه زمانی فروردین 1383 تا آذرماه 1399 استفاده ‌شده است. برای بررسی پویایی‌‌های نرخ ارز، مدل‌‌های سری زمانی گوناگونی معرفی‌ شده‌‌اند که تفاوت اصلی آن‌‌ها در تخمین‌‏های خطی و غیر خطی است. در زمینه مدل‌‌های غیر خطی، امکان بررسی پویایی میانگین غیر خطی شرطی وجود دارد و از آن‌جا ‌که نرخ‌‌های ارز بیان‌گر قیمت‌ دارایی‌‌ها هستند، بنابراین نیاز به ارائه مدل‌‌هایی است که ویژگی دم سنگینی توزیع بازدهی نرخ ارز را شامل شده و امکان واریانس‌‌های متغیر در هر رژیم را فراهم کند. برای این منظور جهت تخمین مدل خود بازگشت آستانه‌ای (TAR) به شیوه بیزی از شبیه‌سازی زنجیره‌های مارکف با استفاده از الگوریتم نمونه‌گیری گیبس استفاده شد. نتایج حاکی از آن است که دو رژیم ارزی وجود دارد که رژیم افزایشی نرخ ارز (رژیم 2) نسبت به رژیم کاهشی نرخ ارز (رژیم 1) از انحراف از استانداردهای رژیمی بالاتری برخوردار است که حاکی از تلاطم ارزی بالا در این رژیم و عدم قطعیت بیشتر است. علاوه بر این، تعدیل در رژیم یک به سمت مسیر تعادل بلندمدت، بسیار مطمئن‌‌تر از تعدیل به سمت مسیر بلندمدت در رژیم دو است چرا که تغییرپذیری در شرایط افزایش نرخ ارز بسیار زیاد است. همچنین نحوه تعدیل نرخ ارز به سمت تعادل بلندمدت در رژیم 2 نسبت به رژیم 1 بسیار سریع‌تر صورت می‌‌پذیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Nonlinear Exchange Rate Dynamics in Iran using the Bayesian Nonlinear Method

نویسنده [English]

  • Sara Mohtashami
Ph.D Student in Economics, Bu-Ali Sina University, Hamadan, Iran
چکیده [English]

Introduction: Exchange rate is a measure of the equality of a country's currency against the currencies of other countries. It indicates the measurement of that country's economic situation in comparison with other countries. In the framework of conventional economic theory, the exchange rate system refers to the mechanism of determining the exchange rate through market forces exerted on the supply and demand.
The purpose of this study is to understand the dynamics governing the exchange rate behavior using nonlinear models. By understanding the exchange rate dynamics, one can recognize its unusual and worrying behavior over time and apply the necessary policies accordingly.
Methodology: The baseline linear model used in this study is a finite-order autoregressive (AR) model with relation (1):




(1)

 



In the real logarithm of the real exchange rate, the interrupted polynomials are placed in the roots of ϕ (z) = 0 on or outside a single circle. The roots outside the unit circle mean that PPP remains stable in the long run.
Regime change regression
Two-mode TAR (2) models are defined as follows:




(2)

 



 
In the above relation, there is a sequence of white noises with mean zero and variance 1. In this model, it is assumed that the variance in each regime is different from that in the other regimes. In order to complete the above definition, the R1 and R2 regimes need to be described more precisely. It depends on how each regime changes over time.
Introducing the Bayesian model
In order to estimate the Bayesian SETAR, we assume that the exchange rate variable has a normal distribution.




(3)

 



 
In the SETAR model, the regime change is defined as a discrete variable as follows:
In the next step, in order to have a Bayesian estimate, we need to specify the backgrounds of the model coefficients and the other parameters. An appropriate assumption in this regard is to assume that the anterior distribution r is a continuous uniform distribution whose boundaries include the minimum and maximum time series data as follows:
In the next step, we will define the backgrounds for the coefficients. According to the objectives of this study, we will use the background for the ignorance of the normal part as follows:
Bayesian estimation method
The basis of Bayesian inferences is Bayesian theorem. According to this theorem, the posterior probability of an event varies according to the product of the previous probability in the logarithm of the orthogonality. In mathematical terms, Bayes' theorem is as follows:
Results and Discussion: Table 1 reports the results of the SETAR model estimation for the exchange rate return (Rials against the dollar with the monthly rotation in the period from 2004 to December 2020). The validity intervals of the coefficients are adjusted and do not include zero, which, like the classical case, is based on the significance of these coefficients.
 




Table 1. Bayesian SETAR model coefficients (1) for the dollar exchange rate




Coefficients


Posterior average


Posterior standard deviation


95% confidence interval



 

0,0079


0,0023


(0,0034;0,0123)



 

0,3179


0,0713


(0,1773;0,4567)



 

0,0147


0,0161


(-0,0172;0,0465)



 

0,4338


0,1468


(0,1427;0,7244)



 

0,0223


0.0006


(0,0208;0,0230)




 




Table 2. Variances of the two regimes in the Bayesian SETAR (1) model for the dollar exchange rate




Coefficients


Posterior average


Posterior standard deviation


95% confidence interval



 

0/0007


0/0001


(0,0006;0,0009)



 

0/0094


0/0019


(0,0064;0,0137)




 
According to the results of Table (2), when the exchange rate is lower than the latter value of thresholds, its variability is much less than when the exchange rate is higher than the threshold value (variance in regime 2 is greater than that in regime 1)
Figure (1) shows the autocorrelation of the simulated values in the latter estimation of the model parameters in the two regimes.
 
Figure 1. Autocorrelation of the posterior coefficients in both regimes 1 and
The results in Figure 1 show that the correlation of the simulated values for all the model parameters rapidly decreases to zero. Therefore, we are faced with a suitable sample of values to simulate the posterior distribution of the parameters. There is also no need to increase the simulation volume.
Figure (2) shows the effect curves of all the later parameters of the model used in this research:
 
Figure 2. Effect diagrams for the SETAR pattern parameters (1)
 
Based on the findings about the curve of the effect related to all the parameters, no regular pattern exists in the simulated values ​​of the parameters. Therefore, the stability of these coefficients is confirmed, and the results of the Bayesian model SETAR (1) used in this study are statistically valid.
 
Conclusion: The exchange rate as a price variable plays a very important role in the performance of an economy. The results of this study indicate that there are two exchange regimes in which the exchange rate adjustment parameter will be in equilibrium with a 95% probability in regime 1 (0.1773,0.4567). This is very small due to the deviation of the latter standard of this coefficient (S. Dev = 0.0713). Also, the same parameter with a 95% probability in regime 2 will be at the distance (0.1427, 0.7244), which is a relatively long distance. The results showed that this is due to the high volatility of the exchange rate in regime 2. In addition, the adjustment in the first regime to the long-term equilibrium path is much safer than the adjustment to the long-term path in the second regime because the variability in the conditions of the exchange rate increase is very high. Finally, the results of this study showed that the expansionary exchange rate regime (regime 1) has a deviation from higher regime standards than the mild exchange rate regime (regime 2), which indicates high currency fluctuations in this regime and more uncertainty. So, using regime 1 provides the conditions for a proper economic growth in the future.

کلیدواژه‌ها [English]

  • Currency market
  • Business approach
  • Currency regimes
Aixalá, J. Fabro, G. & Gadea, M. D. (2019). "Exchange Rates and Prices in Spain during the Gold Standard (1868-1914): A Test of Purchasing Power Parity". Applied Economics Letters 13: 1-5.
Algieri, B. & Bracke, T. (2007). Patterns of Current Account Adjustment Insight from Past Experience, European Central Bank.
Arsalan, Y. Kilinc, M. Turhan, M, I. (2015). "Global Imbalences, Current account Rebalancing and Exchange Rate Adjuatments". Journal of Policy Modeling 37(2): 324-341. http://dx.doi.org/10.1016/j.jpolmod.2015.02.002.
Asghari, M. Haghighat, A. Nonejad, M. & Zare, H. (2019). "The Study of Exchange Rate Dynamics in Iran by Using Dynamic Stochastic General Equilibrium (DSGE) Models". Economic Modeling 13(46): 171-192. [In Persian].
Avdjiev, S. Bruno, V. Koch, C. & Hyun, S. (2018). "The Dollar Exchange Rate as a Global Risk Factor: Evidence from Investment". Bank for International Settlement. Paper prepared for the IMF 18th Jacques Polak Annual Research Conference.
Bahmani-Oskooee, M. (2005). "History of the Rial and Foreign Exchange Policy in Iran". Iranian Economic Review 10(14): 1-20.
Begovic, S. & Kreso, S. (2017). "The Adverse Effect of Real Effective Exchange Rate Change on Trade Balance in European Transitions Countries". Original Scientific Paper 35(2): 277-299.
Cardoso, A. (2017). "The Impact of Chinese Exchange Policy on Foreign Trade with the European Union". Brazilian Journal of Political Economy 4(149): 870-893. http://dx.doi.org/10.1590/0101-31572017v37n04a12.
Chkir, I. Guesmi, K. Brayek, A. B. & Naoui, K. (2020). "Modelling the Nonlinear Relationship between Oil Prices, Stock Markets, and Exchange Rates in Oil-Exporting and Oil-Importing Countries". Research in International Business and Finance 54: 101274.
Chou, K. W. (2019). "Re-examining the Time-varying Nature and Determinants of Exchange Rate Pass-through into Import Prices". The North American Journal of Economics and Finance 49: 331-351.
Cipra, T. (2020). Time Series in Economics and Finance, Springer.
Dadgar, Y. & Nazari, R. (2015). "Evaluation of Financial Development Indicators in Iran". Sixth Conference on Development of Financing System in Iran, Tehran. [In Persian].
Flassbeck, L. (2018). "Exchange Rate Determination and the Flaws of Mainstream Monetary Theory". Brazilian Journal of Political Economy 1(150): 99-114. http://dx.doi.org/10.1590/0101-31572018v38n01a06.
Geravis, O. Schembri, L. & Suchanek, L. (2015). "Current Account Dynamics, Real Exchange Rate Adjustment and the Exchange Rate Regimein Emerging Market-Economics". Journal of Development Economics 119(C): 86-99.
Ghysels, E. & Marcellino, M. (2018). Applied Economic Forecasting using Time Series Methods, Oxford University Press.
Hosseini, H. and Hosseini, V. (2015). "Analysis of Purchasing Power Parity Index". The Second International Future Research Conference. Management and Economic Development. 27 [In Persian].
Hutchision, M. (2011). Currency Crises, Federal Reserve Bank of San Francisco.
Jafari Samimi, A. Alimoradi, M. Bayat, N. & Elmi, S. (2010) "Exchange Costs and Non-Linear Adjustment of the Real Exchange Rate Using the STAR Model (Case Study of Iran)". Economic Research and Policy 18(53): 5-24 [In Persian].
Jalali Naeini, A. & Naderian, M. A. (2016). "Monetary and Exchange Rate Policy in an Oil Exporting Economy: The Case of Iran". Journal of Monetary & Banking Research 9(29): 327-372 [In Persian].
Kamalian, A. R. Valadkhani, A. & Nameni, M. (2011). "How Can Iran’s Black Market Exchange Rate be Managed". Journal of Economic Studies 38(2): 186-202.
Khaloui, M. Farzam, V. & Ansari Nesab, M. (2014). Testing the Theory of Purchasing Power Parity in the Parity of Iran's Currency with Selected Currencies from Neighboring Trading Partners, Master's Thesis, Vali-e-Asr University of Rafsanjan, Faculty of Economic Sciences [In Persian].
Lambertini, L. & Tavares, J. (2003). "Exchange Rate and Fiscal Adjustments: Evidence from the OECD and Implications for EMU". Contributions in Macroeconomics 5(1): 1-30.
Lothian, J. R. (2016). "Purchasing Power Parity and the Behavior of Prices and Nominal Exchange Rates across Exchange Rate Regime". Journal of International Money and Finance 69(c): 5-21. http://dx.doi.org/doi: 10.1016/j.jimonfin.2016.06.015.
Mahmodzadeh, M. & Sadeghi, S. (2017). "Optimal Exchange Regim for Iranian Economy: DSGE Approach". Journal of Economic Research (Tahghighat-E-Eghtesadi) 52(1): 139-162 [In Persian].
Makiyan, S. N. Rostami, M. Farhadi, D. & Zabol, M. A. (2018). "Heterogeneous Effect of Unemployment on Crime in Iran: Hierarchical Panel Bayesian-Poisson Approach". Iranian Journal of Economic Research 23(76): 137-158 [In Persian].
Ming, Ch. L. & Morley, J. (2015). "Beysian Analysis of Nonlinear Exchange Rate Dynamics and Purchasing Power Parity Persistence Puzzle". Journal of International Money and Finance 51: 285-302.
Nakajima, J. (2013). "Stochastic Volatility Model with Regime-Switching Skewness In Heavy-Tailed Errors For Exchange Rate Returns". Studies in Nonlinear Dynamics & Econometrics 17(5): 499-520.
Nasrallahi, Kh. Moghadas Far, S. & Mostolizadeh, M. (2013). "Determining the Equilibrium Exchange Rate and the Effect of its Deviations from the Real Rate on the Four Sectors of Iran's Economy". Economic Journal 13(19): 5-22 [In Persian].
Pourshahabi, F. & Dahmardeh, N. (2014). "The Effects of Economic Sanctions and Speculative Attacks on Inflations". Iranian Economic Review (IER) 18(3): 45-67.
Prado, R. & West, M. (2010). Times Series: Modelling, Computation, and Inference, CRC/Chapman & Hall, Boca Raton, FL.
Rostami, M. & Makiyan, S. N. (2019). "Bayesian Unit Root Test with Outliers Observations: The Case of Daily Returns of 50 Active in Tehran Stock Exchange Companies". Journal of Econometric Modelling 4(3): 59-86 [In Persian].
Saldaña-Zepeda, D. P. Velasco-Cruz, C. & Torres-Preciado, V. H. (2020). "Mexican Peso-USD Exchange Rate: A Switching Linear Dynamical Model Application". International Economics 162: 80-91. DOI:10.1016/j.inteco.2020.01.001.
Solanes, J. G. Flores, T. F. & Monedero, I. R. (2016). "Exchange Rate and Macroeconomic Adjustment in Southern Eurozone Countries". Economic Systems 41(4): 639-650.
Tsay, R. S. (1986). "Nonlinearity Tests for Time Series". Biometrika 73(2): 461-466.
Vartabian Kashani, H. (2014). "The Analysis of Exchange Rate Volatilities during (2010-2012)". Journal of Fiscal and Economic Policies 1(4): 131-154 [In Persian].