سنجش شاخص ‌نااطمینانی بر مبنای جستجوی اینترنتی: مطالعه موردی بازار ارز ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد اقتصاد دانشکده اقتصاد دانشگاه تهران

2 استاد اقتصاد، دانشکده اقتصاد، دانشگاه تهران

3 دانش آموخته دکتری اقتصاد و مدرس دانشگاه تهران

4 دانشجوی دکتری اقتصاد، دانشکده اقتصاد، دانشگاه تهران

چکیده

پس از بحران مالی، مطالعات مربوط به نااطمینانی در دهه اخیر مورد توجه خاص پژوهش‌گران قرار گرفته است. با توجه به اثر منفی نااطمینانی بر رشد و توسعه اقتصادی کشورها، سیاست‌گذاران به دنبال کنترل و کاهش نااطمینانی برای بهبود فعالیت‌های اقتصادی هستند. به این منظور، بایستی نخست میزان نااطمینانی مورد سنجش قرار گیرد. در این مطالعه پس از بیان روش‌های موجود برای محاسبه نااطمینانی، شاخص نااطمینانی بر مبنای جستجوی اینترنتی معرفی ‌شده و مزایا و معایب آن مورد بررسی قرارگرفته است. نظر به تلاطم‌های ارزی در چند سال اخیر در اقتصاد ایران، شاخص نااطمینانی در بازار ارز با استفاده از این روش، در بازه زمانی سال‌های 1382 تا 1395 به‌صورت ماهانه استخراج‌ شده است. همچنین در بخش دیگر شاخص نااطمینانی نرخ ارز ایران به روش مرسوم با بکارگیری خانواده مدل‌های GARCH در بازه زمانی مشابه برآورد شده است. با مقایسه‌های صورت گرفته مشخص شد که این شاخص به‌خوبی نمایش‌دهنده تحولات قیمت ارز در بازار بوده است. به ‌طور کلی سیاست‌گذاران در حوزه‌های مختلف، نیاز به رصد فضای مورد سیاست‌گذاری خود دارند که در این راستا می‌توان از این شاخص برای سنجش نااطمینانی در برخی از این حوزه‌ها بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Calculation of uncertainty index based on an Internet search: A case study of the foreign exchange market of Iran

نویسندگان [English]

  • Hamid Abrishami 1
  • Akbar Komijani 2
  • Mahdi Nouri 3
  • Mohammad Hossein Memarian 4
1 Professor of Economics, Faculty of Economics, University of Tehran
2 Professor of Economics, Faculty of Economics, University of Tehran
3 Ph.D. in Economics and Lecturer, University of Tehran
4 Ph.D. Student, Faculty of Economics, University of Tehran
چکیده [English]

After the financial crisis, studies of uncertainty have been of particular interest to researchers in the past decade. Given the negative impact of uncertainty on the economic growth and development of the country, policymakers seek to control and reduce the uncertainty to improve economic activities. For this purpose, the value of uncertainty must first be assessed. In this study, after the existing methods of calculating uncertainty are expressed, the index of uncertainty is introduced based on an Internet search and its advantages and disadvantages are examined. Given the foreign exchange turbulence in Iran's economy in recent years, the uncertainty indices in the foreign exchange market during the years 2003-2016 are extracted monthly through this procedure. Furthermore, in the next step, GARCH models are used to estimate uncertainty indices in the foreign exchange market for the same period. It has been found through comparison that the Internet search of indices provides a good image of the foreign exchange price variations in the market. In general, policymakers in various areas need to monitor their policy environment, which can be used to measure uncertainty in some of these areas.

کلیدواژه‌ها [English]

  • Uncertainty measurement
  • Information search
  • Risk
  • Exchange rate
  1. Alexopoulos, M. & Cohen, J. (2009). "Uncertain Times, Uncertain Measures". Mimeo. Available at:

https://www.economics.utoronto.ca/public/workingPapers/tecipa-352. pdf.

  1. Bachmann, R. Elstner, S. & Sims, E. R. (2013). "Uncertainty and Economic Activity: Evidence from Business Survey Data". American Economic Journal: Macroeconomics 5(2): 217-249.
  2. Baker, S. R. Bloom, N. & Davis, S. J. (2016). "Measuring Economic Policy Uncertainty". The Quarterly Journal of Economics 131(4): 1593-1636.
  3. Baum, C. F. Caglayan, M. Ozkan, N. & Talavera, O. (2006). "The Impact of Macroeconomic Uncertainty on Non-financial Firms' Demand for Liquidity". Review of Financial Economics 15(4): 289-304.
  4. Bekaert, G. Hoerova, M. & Duca, M. L. (2013). "Risk, Uncertainty and Monetary Policy". Journal of Monetary Economics 60(7): 771-788.
  5. Bloom, N. (2009). "The Impact of Uncertainty Shocks". Econometrica 77(3): 623-685.
  6. Bloom, N. (2014). "Fluctuations in Uncertainty". The Journal of Economic Perspectives 28(2): 153-175.
  7. Bollerslev, T. (1986). "Generalized Autoregressive Conditional Heteroskedasticity". Journal of Econometrics 31(3): 307-327.
  8. Bomberger, W. A. & Frazer, W. J. (1981). "Interest Rates, Uncertainty and the Livingston Data". The Journal of Finance 36(3): 661-675.
  9. Bond, S. R. & Cummins, J. G. (2004). "Uncertainty and Investment: An Empirical Investigation Using Data on Analysts' Profits Forecasts". Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=559528.
  10. Bontempi, M. E. Golinelli, R. & Squadrani, M. (2016). "A New Index of Uncertainty Based on Internet Searches: A Friend or Foe of Other Indicators? ". Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2746346.
  11. Caggiano, G. Castelnuovo, E. & Nodari, G. (2014). "Uncertainty and Monetary Policy in Good and Bad Times". University of Padova and University of Melbourne, Mimeo. Available at: http://www.economia.unipd.it/sites/decon.unipd.it/files/20140188. pdf.
    1. Chang, S. C. (2011). "The Interrelationship between Exchange-rate Uncertainty and Unemployment for South Korea and Taiwan: Evidence from a Vector Autoregressive Approach". International Economics 125: 65-82.
    2. Choi, H. & Varian, H. (2012). "Predicting the Present with Google Trends". Economic Record 88(s1): 2-9.
    3. Der Kiureghian, A. & Ditlevsen, O. (2009). "Aleatory or Epistemic? Does it Matter? ". Structural Safety 31(2): 105-112.
    4. Dzielinski, M. (2012). "Measuring Economic Uncertainty and Its Impact on the Stock Market". Finance Research Letters 9(3): 167-175.
    5. Engle, R. F. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation". Econometrica 50(4): 987-1007.
    6. Fountas, S. Karanasos, M. & Kim, J. (2006). "Inflation Uncertainty, Output Growth Uncertainty and Macroeconomic Performance". Oxford Bulletin of Economics and Statistics 68(3): 319-343.
    7. Fuss, C. and Vermeulen, P. (2004). "Firm’s Investment Decisions in Response to Demand and Price Uncertainty". Applied Economics 40(18): 2337-2351.
    8. Gilchrist, S. Sim, J. W. & Zakrajšek, E. (2014). "Uncertainty, Financial Frictions, and Investment Dynamics". (No. w20038). National Bureau of Economic Research. Available at: http://www.nber.org/papers/w20038.
    9. Giordano, P. and Soederlind, P. (2003). "Inflation Forecast Uncertainty". European Economic Review 47: 1037-1059.
    10. Grier, K. B. & Perry, M. J. (2000). "The Effects of Real and Nominal Uncertainty on Inflation and Output Growth: Some Garch‐m Evidence". Journal of Applied Econometrics 15(1): 45-58.
    11. Ilut, C. L. & Schneider, M. (2014). "Ambiguous Business Cycles". The American Economic Review 104(8): 2368-2399.
    12. Jones, P. M. & Olson, E. (2013). "The Time-varying Correlation between Uncertainty, Output, and Inflation: Evidence from a DCC-GARCH Model". Economics Letters 118(1): 33-37.
    13. Julio, B. & Yook, Y. (2012). "Political Uncertainty and Corporate Investment Cycles". The Journal of Finance 67(1): 45-83.
    14. Jurado, K. Ludvigson, S. C. & Ng, S. (2015). "Measuring Uncertainty". The American Economic Review 105(3): 1177-1216.
    15. Knotek II, E. S. & Khan, S. (2011). "How Do Households Respond to Uncertainty Shocks? ". Kansas City Federal Reserve Board Economic Revivew.
    16. Kontonikas, A. (2004). "Inflation and Inflation Uncertainty in the United Kingdom, Evidence from GARCH Modelling". Economic Modelling 21(3): 525-543.
    17.  Leahy, J. & Whited, T. (1996). "The Effect of Uncertainty on Investment: Some Stylized Facts". Journal of Money, Credit and Banking 28(1): 64-83.
    18. Lee, K. Kang, W. & Ratti, R. A. (2011). "Oil Price Shocks, Firm Uncertainty, and Investment". Macroeconomic Dynamics 15(S3): 416-436.
    19. Lemieux, J. and Peterson, R. A. (2011). "Purchase Deadline as a Moderator of the Effects of Price Uncertainty on Search Duration". Journal of Economic Psychology 32: 33-44.
    20. Levin, L. Efrat, A. & Segal, M. (2014). "Collecting Data in Ad-Hoc Networks with Reduced Uncertainty". Ad Hoc Networks 17: 71-81. Avalable at:

http://www.sciencedirect.com/science/article/pii/S157087051400016X.

  1. Lovell, B. E. (1995). A Taxonomy of Types of Uncertainty, Portland State University.
  2. Machina, M. & Viscusi, W. K. (Eds.). (2014). Handbook of the Economics of Risk and Uncertainty, North-Holland, Elsevier.
  3. Manski, C. F. (2015). "Communicating Uncertainty in Official Economic Statistics: an Appraisal Fifty Years after Morgenstern". Journal of Economic Literature 53(3): 631-653.
  4. Preis, T. Moat, H. S. & Stanley, H. E. (2013). "Quantifying Trading Behavior in Financial Markets Using Google Trends". Available on: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2260189.
  5. Rahman, S. & Serletis, A. (2009). "The Effects of Exchange Rate Uncertainty on Exports". Journal of Macroeconomics 31(3): 500-507.
  6. Rich, R. & Tracy, J. (2010). "The Relationships among Expected Inflation, Disagreement, and Uncertainty: Evidence from Matched Point and Density Forecasts". The Review of Economics and Statistics 92(1): 200-207.
  7. Romer, C. (1990). "The Great Crash and the Onset of the Great Depression". Quarterly Journal of Economics 105: 597-624.
  8. Rossi, B. & Sekhposyan, T. (2015). "Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions". The American Economic Review 105(5): 650-655.
  9. Scotti, C. (2016). "Surprise and Uncertainty Indexes: Real-time Aggregation of Real-activity Macro-surprises". Journal of Monetary Economics 82: 1-19.
  10. Servén, L. (2003). "Real-exchange-rate Uncertainty and Private Investment in LDCs". Review of Economics and Statistics 85(1): 212-218.
  11. So, E. C. (2013). "A New Approach to Predicting Analyst Forecast Errors: Do Investors Overweight Analyst Forecasts? ". Journal of Financial Economics 108(3): 615-640.
  12. Vosen, S. & Schmidt, T. (2011). "Forecasting Private Consumption: Survey‐based Indicators vs. Google Trends". Journal of Forecasting 30(6): 565-578.
  13. Zarnowitz, V. (1992). Composite Indexes of Leading, Coincident, and Lagging Indicators, In Business Cycles: Theory, History, Indicators, and Forecasting (pp. 316-356). University of Chicago Press. Available at: http://www.nber.org/chapters/c10382.pdf.