بررسی اثر تمرکز صنعتی در کارایی انرژی بخش صنعت در استان‌های ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد اقتصاد دانشگاه رازی، کرمانشاه

2 دانشیار گروه اقتصاد دانشگاه رازی، کرمانشاه

3 استادیار گروه اقتصاد دانشگاه رازی، کرمانشاه

چکیده

بخش صنعت یکی از بخش‌هایی است که از یک طرف نقش بسزایی را در توسعه اقتصادی دارد و از طرف دیگر دارای انرژی‌بری بالایی است. در همین راستا تعیین ساختار بهینه صنعت برای کاهش اثرات جانبی منفی توسعه صنعت لازم و ضروری است. در مطالعه حاضر با استفاده از شواهد گزارش شده صنایع کارخانه‌ای با 10 کارکن و بیشتر برای دوره زمانی 1383 تا 1393 و روش اقتصادسنجی فضایی به بررسی اثر تمرکز صنعتی بر کارایی انرژی پرداخته می‌شود. شواهد حاصل از اندازه گیری کارایی انرژی با کاربرد رهیافت مرزی تصادفی نشان می‌دهد که استان بوشهر با مقدار کارایی انرژی 93/0 دارای بیشترین و استان خراسان شمالی با مقدار 134/0 دارای کمترین کارایی انرژی است. همچنین شواهد نشان می‌دهد که استان بوشهر با مقدار 593/0 و استان مرکزی با مقدار 028/0 به ترتیب دارای بیشترین و کمترین تمرکز صنعتی هستند. نتایج حاصل از برآورد مدل اقتصادسنجی فضایی نشان می‌دهد که اثر تمرکز صنعتی بر کارایی انرژی منفی و معنادار است، علت آن ناشی از وابستگی تولید در صنایع مختلف است. لذا تنوع سازی فعالیت‌های صنعتی در مناطق بر اساس پتانسیل مناطق یکی از سیاست‌های بهینه برای افزایش کارایی انرژی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of industrial concentration on the energy efficiency of the industry sector in the Iranian provinces

نویسندگان [English]

  • Bita Eskandari 1
  • Mojtaba Almasi 2
  • Somayeh Azami 3
1 Master of Economics, Razi University, Kermanshah, Iran
2 Associate Professor, Razi University, Kermanshah, Iran
3 Assistant Professor, Razi University, Kermanshah, Iran
چکیده [English]

Introduction: Industry is one of the sectors that plays a significant role in economic growth and, on the other hand, has high energy consumption. From the environmental point of view, high economic growth along with optimal life quality is a main objective for economy. Any disagreement among economic objectives may impose heavy costs on the economy. Development of the industry sector, due to its importance in economic growth, plays a crucial role in economic development and the level of energy consumption in that sector, which is more than that in the other sectors of the economy. In this regard, improvement of energy efficiency in the industry sector is an important policy for the reduction of negative effects of economic growth.
Methodology: To estimate the effect of industrial concentration on energy efficiency at the provincial level during 2004 to2014, the following equation was used.
 
In this equation, eff denotes the calculated efficiency of energy by Stochastic Frontier Analysis (SFA) in I provinces and t time, conc shows Alison Glassier industrial concentration index, r&d is the research and development expenses, com is the cost of communication and computer, and w is the standardized spatial matrix. To measure the efficiency of the consumed energy, SFA was used. Also, to estimate the energy efficiency from point of view of production, the Shephard Di
The Alison Glassier Index was employed to calculate the industrial concentration index (y) as follows:
 
Results and Discussion: The results obtained from the calculation of Alison Glassier Index for each province in the period of 2004-2014 shows that the highest industrial concentration of 0/593 for Booshehr and the lowest for Markazi Province which is 0/028. One of the main reasons for the high index in Booshehr is the industrial structure of this place. In fact the share of this province in the production of chemical products was 40 percent of the total products of the country in 2014.
In fact, Markazi Province has simultaneous roles in most industries and, thus, had the least industrial concentration in 2014.  The result obtained for the other provinces indicates that East Azarbayjan and Qhazwin by 0/03 are among the provinces with low industrial concentration. Ilam, Kerman, Hormozgan, Sistan and Balouchestan are among the places with high industrial concentration. Based on the data of 2014, the share of Hormozgan in the total production of the country in most industries is almost zero.
A survey of the changes in the concentration index of all the provinces shows that, on average, concentration reduced from 0/132 in 2004 to 0/115 in 2006, and then it increased to 0/191 in 2013. The results obtained by SFA also reveal that Booshehr had the highest energy efficiency of 0/93 while North Khorasan with the efficiency of 0/134 had the lowest amount of energy efficiency. The result also shows that six provinces with energy efficiency of higher than average had a concentration higher than average. Also, 11 provinces with efficiency rates lower than average had the lower-than-average industrial concentration. Therefore, in 17 provinces, the rates of efficiency and concentration were the same. In fact, the provinces with higher or lower energy efficiency were those with high or low industrial concentration. Only in 13 provinces, the rates of energy efficiency and concentration were in opposite directions. The study of the changes in the energy efficiency of all the provinces shows that, on average, the amount of efficiency increased significantly from 0/398 in 2004 to 0/525 in 2014.
The results from the estimation of SDF also show that the level of Gamma was almost zero and, thus, variation in the energy efficiency was insignificant. Energy efficiency increased from 0/4 in 2004 to 0/53 in 2014.
The analysis by the Granger causality method shows that there is a relationship between industrial concentration and energy efficiency. Its positive or negative effect on energy efficiency can be known by the other models of econometrics such as spatial econometrics.
There are three steps for the estimation by the spatial model of Elhorst used in this paper. Firstly, Moran statistics are used to investigate the existence of spatial effects in the variable of energy efficiency and the residuals of factors effecting energy efficiency. Then, by the statistics of Lagrange coefficient, all types of spatial effects (spatial errors or spatial lag) are evaluated. Thirdly, by the use of the maximum likelihood test, the fixed effects of space and time are studied, and ultimately Hassman Spatial Test reveals the type of the estimated model.
In general, to survey the effective factors in the energy efficiency of manufacturing sectors, the spatial model of econometrics is used through the method of random effect and by considering the spatial heterogeneous effects along with two spatial lags and spatial error. The result reveals that, whatever the level of industrial concentration increases, the level of energy efficiency reduces at the error level of 0/05. Thus, a one-percent increase at the level of industrial concentration will reduce the level of energy efficiency by 0/056.
Conclusion: Kaldor (1966) believes that industrial sector is the growth engine for the economic development of a country, and evidence shows that the amount of energy consumption in this sector is more than in the other sectors of the economy. Thus, the present study tries to determine the efficiency of energy consumption and the effect of concentration of industry on energy efficiency by using the data of manufacturing industries in the Iranian provinces from 2004 to 2014. The results of the estimation of the spatial econometrics model show that the effect of industrial concentration on energy efficiency is negative and statistically significant at the error level of 5%. Therefore, an increase in industrial concentration reduces the energy efficiency. In addition, the effect of research and development on energy efficiency is positive and significant, but the effect of computer and communication on energy efficiency is negative and significant. Therefore, improvement of research and development expenditure can increase energy efficiency and environment quality. Also, diversification of industrial activities in regions on the bases of their potentials can be an optimal policy to increase energy efficiency.

کلیدواژه‌ها [English]

  • Industrial concentration
  • Energy efficiency
  • Spatial econometrics
  1. شهنازی، روح‌اله. و دهقان شبانی، زهرا (1395). "تحلیل تاثیر زیرساخت‌های حمل و نقل بر تمرکز فعالیت‌های صنعتی در استان‌‌های ایران". تحقیقات اقتصادی 51(4): 908-887.
  2. عبادی، زهرا. حسین‌پور، فاطمه. عبدالهیان، حمیدرضا. و سعیدی، سید ناصر (1397). "بررسی اثر وفور منابع نفت و گاز بر کارایی انرژی در کشورهای تحصیلدار". فصلنامه مطالعات اقتصاد انرژی ۱۴(۵۷): ۲۳۴-201.
  3. عرب مازار، عباس. و خسروی، عاطفه (1397). "تحلیل مقایسه‌ای روند بهره‌وری انرژی در استان‌های کشور". فصلنامه پژوهش‌های سیاست‌گذاری و برنامه‌ریزی انرژی ۴(۱۰): ۶۶-41.
  4. کفایی، محمدعلی. و آقائیان وش، پریا (1395). "برآورد و مقایسه کارایی انرژی در بخش‌های اقتصادی ایران". فصلنامه اقتصاد و الگوسازی 7(27): 122-97.
  5. کفایی، محمدعلی. و آقائیان وش، پریا (1396). "شناسایی عوامل موثر بر کارایی انرژی بخشی در اقتصاد ایران". فصلنامه مطالعات اقتصاد انرژی 13(52): 34-1.
  6. کفایی، محمدعلی. و خسروی، عاطفه (1395). "برآورد کارایی انرژی در استان‌های ایران به روش تابع مرزی تصادفی". فصلنامه مطالعات اقتصاد انرژی 12(50): 128-101.
  7. گراوند، سهراب. مهرگان، نادر. صادقی، حسین. و ملکشاهی، مجتبی (1392). "ارزیابی کارایی انرژی در صنعت پتروشیمی کشور". سیاست‌گذاری اقتصادی 5(10): 74-57.
  8. محرابی، شاپور. و داودی، سید محمدرضا (1397). "پیش‌بینی کارایی و عوامل مؤثر بر انرژی در چارچوب یک مدل پویایی‌شناسی سیستم: مطالعه موردی شرکت‌های پتروشیمی بنیاد مستضعفان". فصلنامه مطالعات اقتصاد انرژی ۱۴(۵۹): ۲۱۱-۱۸۵.
  9. ناجی میدانی، علی اکبر. مهدوی عادلی، محمد حسین. و عربشاهی دلویی، مهدیه (1394). "بررسی رابطه بین صنعتی شدن و کارایی انرژی بخش صنعت در ایران". سیاست‌گذاری اقتصادی 7(13): 56-27.
  10. ناظمی، علی. کریمی، فاطمه. ممی‌پور، سیاب. و فشاری، مجید (1398). "کارایی ‌انرژی در استان‌های ایران: تحلیل‌پوششی‌داده‌ها". فصلنامه پژوهش‌های سیاست‌گذاری و برنامه‌ریزی انرژی ۵(۱۴): ۱۴۲-103.
    1. Al-Muharrami, S. & Matthews, K. (2009). "Market Power Versus Efficient-Structure in Arab GCC Banking". Applied Financial Economics 19(18): 1487-1496.
    2. Bhadbhade, N. Yilmaz, S. Zuberi, J. S. Eichhammer, W. & Patel, M. K. (2020). "The Evolution of Energy Efficiency in Switzerland in the Period 2000–2016". Energy 191: 1-30.‏
    3. Boyd, G. A. (2008). "Estimating Plant Level Energy Efficiency with a Stochastic Frontier". The Energy Journal 29(2): 23-43.
    4. Brülhart, M. & Mathys, N. A. (2008). "Sectoral Agglomeration Economies in a Panel of European Regions". Regional Science and Urban Economics 38(4): 348-362.‏
    5. Buck, J. & Young, D. (2007). "The Potential for Energy Efficiency Gains in the Canadian Commercial Building Sector: a Stochastic Frontier Study". Energy 32(9): 1769-1780.
    6. Chen, D. Chen, S. & Jin, H. (2018). "Industrial Agglomeration and CO2 Emissions: Evidence from 187 Chinese Prefecture-Level Cities Over 2005–2013". Journal of Cleaner Production 172: 993-1003.‏
    7. Demsetz, H. (1973). "Industry Structure, Market Rivalry, and Public Policy". The Journal of Law and Economics 16(1): 1-9.
    8. Dong, K. Sun, R. Hochman, G. & Li, H. (2018). "Energy Intensity and Energy Conservation Potential in China: a Regional Comparison Perspective". Energy 155: 782-795.‏
    9. Elhorst, J. P. (2014). Linear Spatial Dependence Models for Cross-section Data. In Spatial Econometrics (pp. 5-36), Springer, Berlin, Heidelberg.
    10. Feijoó, M. L. Franco, J. F. & Hernández, J. M. (2002). "Global Warming and the Energy Efficiency of Spanish Industry". Energy Economics 24(4): 405-423.
    11. Gumbau-Albert, M. & Maudos, J. (2002). "The Determinants of Efficiency: the Case of the Spanish Industry". Applied Economics 34(15): 1941-1948.
    12. He, Y. Liao, N. & Zhou, Y. (2018). "Analysis on Provincial Industrial Energy Efficiency and Its Influencing Factors in China Based on DEA-RS-FANN". Energy 142: 79-89.‏
    13. Hicks, J. R. (1935). "Annual Survey of Economic Theory: the Theory of Monopoly". Econometrica: Journal of the Econometric Society 3(1): 1-20.
    14. Kopidou, D. Tsakanikas, A. & Diakoulaki, D. (2016). "Common Trends and Drivers of CO2 Emissions and Employment: a Decomposition Analysis in the Industrial Sector of Selected European Union Countries". Journal of Cleaner Production 112(5): 4159-4172.
    15. Li, M. J. He, Y. L. & Tao, W. Q. (2017). "Modeling a Hybrid Methodology for Evaluating and Forecasting Regional Energy Efficiency in China". Applied Energy 185(2): 1769-1777.‏
    16. Lin, B. & Long, H. (2015). "A Stochastic Frontier Analysis of Energy Efficiency of China's Chemical Industry". Journal of Cleaner Production 87(1): 235-244.
    17. Lin, B. & Wang, X. (2014). "Exploring Energy Efficiency in China′s Iron and Steel Industry: A Stochastic Frontier Approach". Energy Policy 72: 87-96.
    18. Lin, B. & Yang, L. (2013). "The Potential Estimation and Factor Analysis of China′s Energy Conservation on Thermal Power Industry". Energy Policy 62: 354-362.
    19. Lin, H. L. Li, H. Y. & Yang, C. H. (2011). "Agglomeration and Productivity: Firm-level Evidence from China's Textile Industry". China Economic Review 22(3): 313-329.
    20. Liu, J. Cheng, Z. & Zhang, H. (2017). "Does Industrial Agglomeration Promote the Increase of Energy Efficiency in China? ". Journal of Cleaner Production 164: 30-37.
    21. Marshall, A. (1890). Principles of Economics, Macmillan, London.
    22. Ouyang, X. Wei, X. Sun, C. & Du, G. (2018). "Impact of Factor Price Distortions on Energy Efficiency: Evidence from Provincial-level Panel Data in China". Energy policy 118: 573-583.‏
    23. Sanchis, G. R. (2012). Essays on Urban and Spatial Economics, A Thesis Submitted to the Department of Geography of the London School of Economics for the degree of Doctor of Philosophy, London, March 2012.
    24. Shen, N. Zhao, Y. & Wang, Q. (2018). "Diversified Agglomeration, Specialized Agglomeration, and Emission Reduction Effect—A Nonlinear Test Based on Chinese City Data". Sustainability 10(6): 1-22.
    25. Wang, H. N. & Chen, Y. Y. (2010). "Industrial Agglomeration and Industrial Energy Efficiency: Empirical Analyses Based on 25 Industries in China [J] ". Journal of Finance and Economics 9: 69-79.‏
    26. Weber, A. (1909). Über den Standort der Industrie, Mohr, Tübingen. (In German) (Translated by Friedrich C.J. as Theory of the Location of Industries, University of Chicago Press, Chicago, 1929.)
    27. Xiong, S. Ma, X. & Ji, J. (2019). "The Impact of Industrial Structure Efficiency on Provincial Industrial Energy Efficiency in China". Journal of Cleaner Production 215: 952-962.‏
    28. Zhao, H. & Lin, B. (2019). "Will Agglomeration Improve the Energy Efficiency in China’s Textile Industry: Evidence and Policy Implications? ". Applied Energy 237: 326-337.‏
    29. Zheng, Q. & Lin, B. (2018). "Impact of Industrial Agglomeration on Energy Efficiency in China’s Paper Industry". Journal of Cleaner Production 184: 1072-1080.‏