اثرات وابسته به وضعیت رشد نقدینگی بر نوسانات نرخ ارز در اقتصاد ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته علوم اقتصادی، گروه اقتصاد، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد، گروه اقتصاد، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 استادیار، گروه اقتصاد، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

4 استادیار، گروه اقتصاد، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران

چکیده

این مطالعه واکنش پویای نوسانات نرخ ارز اسمی را به وضعیت‌های مختلف رشد نقدینگی در اقتصاد ایران و طی دوره زمانی 1398:04-1369:03 مورد تحلیل قرار می‌دهد. بدین منظور نوسانات نرخ ارز اسمی با استفاده از مدل MS-EGARCH(1,1)[1] با توزیع شرطی sstd محاسبه شده است. نتایج مطالعه با بهره‌گیری از مدل خودرگرسیون برداری آستانه‌ای[2] (TVAR) و لحاظ نوسانات نرخ ارز اسمی به عنوان متغیر آستانه حاکی از آن است که در رژیم پایین نوسانات نرخ ارز اسمی، وقفه‌های رشد نقدینگی اثر معنی‌داری بر نوسانات نرخ ارز اسمی ندارند اما در رژیم بالای نوسانات نرخ ارز اسمی، وقفه‌های رشد نقدینگی اثر مثبت و معنی‌داری بر نوسانات نرخ ارز اسمی دارند؛ همچنین رابطه مبادله تجاری، نوسانات نرخ ارز اسمی را در رژیم بالای نوسانات نرخ ارز اسمی، کاهش می‌دهد. نتایج مطالعه با استفاده از مدل خودرگرسیون برداری با امکان تغییر رژیم مارکوف[3] (MSVAR) نشان می‌دهد که در معادلات نوسانات نرخ ارز اسمی و رشد نقدینگی، ضرایب خودرگرسیونی در هر دو رژیم معنی‌دار هستند. همچنین نتایج آزمون علیت گرنجر بر پایه معادلات MSVAR حاکی از آن است که در رژیم پایین نوسانات نرخ ارز اسمی، رشد نقدینگی علت گرنجری نوسانات نرخ ارز اسمی نمی‌باشد اما رشد نقدینگی علیت گرنجر نوسانات نرخ ارز اسمی در رژیم بالای نوسانات نرخ ارز اسمی خواهد بود. از طرف دیگر، رابطه مبادله تجاری نیز علیت گرنجر نوسانات نرخ ارز اسمی در رژیم بالای نوسانات نرخ ارز اسمی است. با توجه به نتایج مطالعه در رژیم بالای نوسانات نرخ ارز اسمی، رشد نقدینگی و رابطه مبادله تجاری بر نوسانات نرخ ارز اسمی مؤثر می‌باشند، لذا چنانچه رشد نقدینگی کنترل شود و رابطه مبادله تجاری بهبود یابد، باعث کاهش در نوسانات نرخ ارز اسمی می‌شود که می‌تواند به عنوان یک نکته راهبردی مورد توجه سیاست‌گذاران قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

State-dependent effects of liquidity growth on exchange rate volatility in Iran's economy

نویسندگان [English]

  • Elham Amrollahi Bioki 1
  • Kambiz Hojabr Kiani 2
  • Abbas Memarnejad 3
  • Seyed Yahya Abtahi 4
1 Ph.D. student, Department of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Professor, Department of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Assistant Professor, Department of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 Assistant Professor, Department of Economics, Yazd Branch, Islamic Azad University, Yazd, Iran
چکیده [English]

Introduction: Monetary variables serve as the main conditions for economic stability. In the economy of Iran, liquidity has tremendously grown in recent years and, by affecting the exchange rate as an important macroeconomic variable, has led to its volatility. Therefore, identifying the relationship between liquidity and exchange rate volatility is of great importance from the perspective of economic policymakers in order to make decisions in macroplans. This study analyzes the dynamic response of nominal exchange rate volatility in different states of liquidity growth in the Iranian economy.
Methodology: At first, using the statistics of the Central Bank of the Islamic Republic of Iran, the quarterly data were extracted of the nominal exchange rate, liquidity, export price index, and import price index for the period of 1990-2019.Then, the liquidity growth variable was calculated through the logarithmic difference of that variable. Also, with regard to the terms of trade from the ratio of export price index to import price index, the nominal exchange rate volatility was calculated by using MS-EGARCH (1,1), MS-TGARCH (1,1) and MS-GJRGARCH(1,1) with the norms of std, ged, sstd, and sged conditional distributions. The results indicated that the MS-EGARCH (1,1) model with the sstd conditional distribution and the lowest value of Akaike Information Criterion (AIC) is the optimal model for calculating nominal exchange rate volatility; Then, the stationary of liquidity growth, terms of trade and nominal exchange rate volatility were confirmed by using Lee and Strazicich test (2003) with two structural breaks. Using the linear vector autoregressive model, the optimal interval length of the model was found to be 4. According to test conducted by Hansen (1999), the number of regimes turned to be 2. As a result, the threshold vector autoregressive model (TVAR) with two regimes was used to investigate the effect of the liquidity growth and terms of trade on the nominal exchange rate volatility.
Results and Discussion: Considering the nominal exchange rate volatility as a threshold variable with the value of 12.57, the results indicate that, in the low regime of the nominal exchange rate volatility, lagged liquidity growth does not have a significant effect on the nominal exchange rate volatility. However, by exceeding the threshold and being in the high regime of nominal exchange rate volatility, the lagged liquidity growth have positive and significant effect on nominal exchange rate volatility, because the growth of liquidity as an expansionary monetary policy leads to growth in demand for goods and services. Because the supply of goods and services is limited in the short time, this leads to inflation and the exchange rate volatility increases. Also, the terms of trade reduce the nominal exchange rate volatility in the high regime, which is consistent with the findings of Chipili (2012). In addition, in order to explain the dynamics of liquidity growth and nominal exchange rate volatility, the Markov Switching Vector Autoregressive (MSVAR) model was used. The results show that, in the equations of the nominal exchange rate volatility and liquidity growth, the autoregressive coefficients are significant in both regimes. The results of Granger causality test based on MSVAR equations indicate that, in the low regime of the nominal exchange rate volatility, liquidity growth is not the Granger cause of this volatility, while liquidity growth is the Granger cause in the high regime. The terms of trade are also the Granger cause of the nominal exchange rate volatility in the high regime. According to the results of the study, in the high regime, the growth of liquidity and terms of trade are effective in the volatility.
Conclusion: If the liquidity is directed to production according to the quantity theory of money, the volume of production increases and part of the liquidity effect will be neutralized. Otherwise, speculators and traders in the market assets such as gold, currency and housing will increase the price of these assets as well as inflation and exchange rate volatility in the country; Also, if the government adjusts its budget deficit through supply-side policies instead of borrowing from the central bank, it will reduce the turbulence in the exchange market by reducing the amount of liquidity. The terms of trade can be improved by factors such as exporting goods to countries with low elasticity demand, maintaining the monopoly status of the country's exports, supporting of exporters, and decreasing share of oil in the country's exports, Therefore, if the liquidity growth is controlled and the terms of trade are improved, the nominal exchange rate volatility decreases, which policymakers consider as a strategic point.

کلیدواژه‌ها [English]

  • Threshold vector autoregressive (TVAR) model
  • Markov switching vector autoregressive (MSVAR) model
  • Markov switching GARCH (MSGARCH) model
  • Liquidity
  • Nominal exchange rate volatility
Adusei, M. and Gyapong, E. W. (2017). "The Impact of Macroeconomic Variables on Exchange Rate Volatility in Ghana: The Partial Least Squares Structural Equation Modelling Approach". Research in International Business and Finance 42(C): 1428-1444.
Ajao, M. G. and Igbokoyi, O. (2013). "The Determinants of Real Exchange Rate Volatility in Nigeria". Journal of International Studies 2(1): 459-471.
Alagidede, P. and Ibrahim, M. (2017). "On the Causes and Effects of Exchange Rate Volatility on Economic Growth: Evidence from Ghana". Journal of African Business 18(2): 169-193.
Alvarez, F. Atkeson, A. and Kehoe, P. J. (2000). "Money, Interest Rates, and Exchange Rates with Endogenously Segmented Asset Markets". Working Paper 605, Federal Reserve Bank of Minneapolis.
Arabmzar, A. and Golmoradi, H. (2010). "A Survey of the Sources of Real Exchange Rate and Inflation Fluctuations in a Survey of the Iran". Journal of Economics and Modelling 1(2): 75-103.
Ardia, D. Bluteau, K. Boudt, K. and Catania, L. (2018). "Markov-Switching GARCH Models in R: The MSGARCH Package". Journal of Statistical Software 91(4).
Banti, Ch. and Phylaktis, K. (2015). "FX Market IIliquidity and Funding Liquidity Constraints". Journal of International Money and Finance 56: 114-134.
Baumol, W. J. (1952). "The Transactions Demand for Cash: An Inventory Theoretic Approach". Quarterly Journal of Economics 66: 545-56.
Beine,M. Laurent, S. and Lecourt, Ch. (2001). "Official Central Bank Interventions and Exchange Rate Volatility: Evidence from a Regime Switching Analysis". European Economic Review 47(5): 891-911.
Bordon, A. R. and Anke, W. (2010). "The Transmission Mechanism in Armenia: New Evidence from a Regime Switching VAR Analysis". IMF Working Paper.
Calderon, C. and Kubota, M. (2018). "Does Higher Openness Cause more Real Exchange Rate Volatility?". Journal of International Economics 110: 176-204.
Celso, B. Celso, S. Roberto S. M. Chiara, T. and Augustine H.H. (2008). "Markov Switching GARCH Models of Currency Turmoil in Southeast Asia". Emerging Markets Review 9: 104-128.
Cevik, S. Harris, R. and Yilmaz, F. (2015). "Soft Power and Exchange Rate Volatility". International Monetary Fund 15(63).
Chen, J. Zhu, X. and Zhong, M. (2019). "Nonlinear Effects of Financial Factors on Fluctuations in Nonferrous Metals Prices: A Markov-switching VAR Analysis". Resources Policy 61: 489-500.
Chipili, J. M. (2012). "Modelling Exchange Rate Volatility in Zambia". African Finance Journal 14: 85-107.
Clarida, R. H. and Gali, J. (1994). "Sources of Real Exchange-Rate Fluctuations: How Important Are Nominal Shocks?". Carnegie-Rochester Conference Series on Public Policy 41: 1-56.
Cosslett, S. R. and Lee, L. F. (1985). "Serial Correlation in Discrete Variable Models". Journal of Econometrics 27(1): 79-97.
Dehghan, E. and Zare, H. (2020). "The Impacts of Risk Premium Monetary and Oil Policies, Supply and Demand on the Exchange Rate and Inflation in Iran under the the Taylor and Mccallum rules". The Journal of Economic Policy 11(22): 263-298.
Dornbusch, R. (1976). "Expectations and Exchange Rate Dynamics". Journal of Political Economy 84: 1161-1176.
Edwards, S. (1989). Real Exchange Rate, Devaluation and Adjustment, MIT Press, Cambridge.
Eichenbaum, M. and Evans, C. L. (1995). "Some Empirical Evidence on the Effects of Shocks to Monetary Policy on Exchange Rates". Quarterly Journal of Economics 110: 975-1010.
Elbadawi, I. (1994). Estimating Long-run Equilibrium Real Exchange Rates, In: Williamson J (ed) Estimating Equilibrium Exchange Rates, Washington D. Institute for International Economics.
Esmaeili Razi, H. and Tayebi, K. (2014). "Main Determinants of Iran’s Real Exchange Rate, Through Using Auto Regressive Distributed Lag (ARDL) Approach". Journal of Economic Development Policy 2(1): 11-40.
Frommel, M. and Hannover, U. (2004). "Modelling Exchange Rate Volatility in the Run-up to EMU using a Markov Switching GARCH Model". Working Paper 306.
Ghorbanzadeh, M. (2015). "Investigating the Relationship between Terms of Trade and its Changes in Iran". Economic Journal 14(5,6): 55-76.
Goldfeld, S. M. and Quandt R. E. (1973). "A Markov Model for Switching Regressions". Journal of Econometrics 1(1): 3-16.
Grilli, V. and Roubini, N. (1992). "Liquidity and Exchange Rates". Journal of International Economics 32: 339-352.
Grydaki, M. and Fontas, S. (2011). "What Explains Nominal Exchange Rate Volatility? Evidence from the Latin American Countries". Discussion Paper Series 2010_10, Department of Economics, University of Macedonia.
Guidolin, M. Chincoli, F. (2017). "Linear and Nonlinear Predictability in Investment Style Factors: Multivariate Evidence". Journal of Asset Management 18: 476–509.
Hadian, E. and Khorsandi, M. (2008). "Sources of Real Exchange Rate Fluctuations in Iran". Iranian Journal of Economic Research 11(35): 31-50.
Hamilton, J.D. (1989). "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle". Econometrica 57(2): 357-384.
Hansen, B.E. (1999). "Threshold Effects in Non-dynamic Panels: Estimation, Testing, and Inference". Journal of Econometrics 93: 345-368.
Hassan, A. Abubakar, M. and Dantama, Y. U. (2017). "Determinants of Exchange Rate Volatility: New Estimates from Nigeria". Eastern Journal of Economics 3(1): 1-12.
Hoshmand, M. Daneshnia, M. Shahrivar, S. Ghezelbash, A. and Eskandaripur, Z. (2012). "The Relationship between Monetary Policy and Exchange Rate in Iran". Journal of Quantitative Economics 9(2): 109-127.
Hosseini, M. and Mirhadi, S. (2002). "Investigating the Behavior of Iran's Terms of Trade". Iranian Journal of Trade Studies 22: 25-56.
Hosseinzadeh Yosef Abad, S.M. and Haghighat, A. (2013). "The Effect of Monetary Policy on Exchange Rate in IRAN by using the Model of Auto Regressive Distributed Lag (ARDL)". Journal of Financial Economics 7(25): 123-146.
Ichiue, H. and Koyama, K. (2007). "Regime Switches in Exchange Rate Volatility and Uncovered Interest Parity". Bank of Japan Working Paper Series.
Insah, B. and Chiaraah, A. (2013). "Sources of Real Exchange Rate Volatility in the Ghanaian Economy". Journal of Economics and Intentional Finance 5(6): 232-238.
Kazerooni, A. and Sojoodi, S. (2010). "The Impact of Terms of Trade Volatility on Economic Growth of Iran". Journal of Economic Research (Tahghighat-e- Eghtesadi) 45(1): 119-139.
Khalesi, M. (2001). "Causes of Relative Price Volatility and Real Exchange Rate of Rials and US Dollars, the Importance of Real and Nominal Shocks". Monetary and Banking Research Institute of the Central Bank 4(11).
Khalili Araghi, M. and Rahimzadeh Namvar, M. (2019). "The Time Inconsistency of Monetary Policies and its Effect on the Exchange Rate Fluctuation in Iran". The Journal of Economic Policy 11(21): 217-240.
Khemiri, R. (2012). "Volume and Volatility in Foreign Exchange Market Microstructure: a Markov Switching Approach". Appl Financ Econ 22: 1121-1133.
Khin, A. A. Yee, Ch. Y. Seng, L. S. Wan, Ch. M. and Xian, G. Q. (2017). "Exchange Rate Volatility on Macroeconomıc Determinants in Malaysia: Vector Error Correction Method (Vecm) Model". Journal of Global Business and Social Entrepreneurship 3(5): 36-45.
Kilicarslan, Z. (2018). "Determinants of Exchange Rate Volatility: Empirical Evidence for Turkey". Journal of Economics, Finance and Accounting 5(2): 204-213.
Kim, S. and Roubini, N. (2000). "Exchange Rate Anomalies in the Industrial Countries: A Solution with a Structural VAR Approach". Journal of Monetary Economics 45: 561-586.
Klaassen, F. (2002). "Improving GARCH Volatility Forecasts with Regime-Switching GARCH". Empirical Economics 27: 363-394.
Krolzig, H.M. (1998). Econometric Modelling of Markov-switching Vector Auto Regressions using MSVAR for Ox, Oxford, Institute of Economics and Statistics and Nuffield College.
Lee, J. and Strazicich, M. C. (2003). "Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks". Review of Economics and Statistics 85: 1082-1089.
Mahdian, S. (2014). The Effect of Exchange Rate Volatility on Liquidity in Iran's Economy, MA, Department of Economics, Management and Accounting, Yazd University.
Mancini, L. Ranaldo, A. and Wrampelmeyer, J. (2013). "Liquidity in the Foreign Exchange Market: Measurement, Commonality, and Risk Premiums". The Journal of Finance 68: 1805-1841.
Melvin, M. and Taylor, M. (2009). "The Crisis in the Foreign Exchange Market". Journal of International Money and Finance 28(8): 1317-1330.
Obstfeld, M. and Rogoff, K. (1995). "Exchange Rate Dynamics Redux". Journal of Political Economy 103: 624-660.
Ojede, A. and Lam, E. (2017). "The Impact of Changes in Monetary Aggregates on Exchange Rate Volatility in a Developing Country: Do Structural Breaks Matter?". Economics Letters 155: 111-115.
Ozcelebi, O. (2018). Analysis of the Role of Exchange Rate Volatility in Monetary Policy Conduction in OECD Countries: Empirical Evidence from Panel-VAR Models, In: Vito Bobek (ed), Trade and Global Market, IntechOpen.
Ozdemir, S. and Akgul, I. (2015). "Inflationary Effects of Oil Prices and Domestic Gasoline Prices: Markov-switching-var Analysis". Pet. Sci. 12(2): 355-365.
Pham, Th. H. H. (2018). "Liquidity and Exchange Rate Volatility". Document de Travail, Working Paper halshs-01708633.
Rogoff, K. (2002). "Dornbusch’s Overshooting Model after Twenty-Five Years". IMF Working Paper 02(39): 1-34.
Rossi, J. (2013). "Liquidity and Exchange Rates". Insper Working Papers wpe_325, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
Salmani, B. (2011). Investigating the Effect of Terms of Trade on Economic Growth, MA, Tabriz University.
Salvatore, D. (2000). International Finance: Theories and Policies of International Economics, Tehran, Nashrney.
Stancik, J. (2007). "Determinants of Exchange Rate Volatility: The Case of the New EU Members". Czech Journal of Economics and Finance 57(9-10): 414-432.
Tariq, M. A. Muhammad Tariq, M. and Tariq, B. (2015). "Impact of Interest Rate, Inflation and Money Supply on Exchange Rate Volatility in Pakistan". World Applied Sciences Journal 33(4): 620-630.
Tobin, J. (1956). "The Interest-Elasticity of Transactions Demand for Cash". Review of Economics and Statistics 38: 47-241.
Tong, H. (1983). Threshold Models in Non-linear Time Series Analysis, New York, Springer-Verlag.
Wang, T. (2004). "China: Sources of Real Exchange Rate Fluctuations". Asia and Pacific Department IMF Working Paper 18.
Williamson, J. (1994). Estimates of FEERs, In: Williamson, J. (ed) "Estimating Equilibrium Exchange Rates", Washington DC, Institute for International Economics.