ارائه مدل تأثیر سیاست‌گذاری بانک مرکزی ایران بر متغیرهای کلان اقتصادی: رویکرد تعادل عمومی پویای تصادفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده اقتصاد، دانشگاه تهران و پژوهشگر بانک مرکزی ج.ا.ا

2 استاد دانشکده اقتصاد، دانشگاه تهران

3 دانشکده اقتصاد دانشگاه شیراز

چکیده

اهمیت سازوکار تامین مالی و بررسی تاثیر رفتار بانک مرکزی بر این سازوکار، یکی از مسائل مهمی است که در تمام اقتصادهای دنیا، به‌ویژه اقتصادهای بانک محور همواره مورد نظر اقتصاددانان بوده است. هدف مقاله حاضر بررسی تاثیر سیاست‌های بانک مرکزی بر متغیرهای کلان اقتصادی با تاکید بر رفتار بانک‌ها به عنوان تامین‌کنندگان اصلی تامین سرمایه و نقدینگی برای بخش تولید می‌باشد. بر این اساس، شرایط اقتصادی کشور در یک مدل تعادل عمومی پویای تصادفی و با استفاده از اطلاعات فصلی در دوره زمانی 1397-1368 شبیه‌سازی شده؛ تا اثر شوک‌های پولی، اعتباری و حقیقی بر اقتصاد کشور تجزیه و تحلیل گردد. در این مدل تشکیل سرمایه، توسط تولیدکننده کالای سرمایه‌ای و کارآفرین انجام می‌پذیرد؛ که منابع مالی کارآفرین، توسط واسطه مالی (بانک) تامین می‌گردد. وظیفه بانک در این الگو، تامین سرمایه در گردش مورد نیاز واحدهای تولیدی و منابع مورد نیاز کارآفرین در نرخ‌های سود از قبل مشخص می‌باشد؛ که با توجه به شرایط اقتصاد کلان کشور، نرخ سود توسط شورای پول و اعتبار و به صورت دستوری تعیین شده و ابزار هدف‌گذاری بانک مرکزی کل‌های پولی می‌باشد. با توجه به نقش واسطه‌های مالی در الگو ممکن است کارآفرین دچار ورشکستگی شده و در نتیجه بانک وثایق دریافتی را تملک نماید؛ لذا سیاست‌گذاری پولی و اعتباری نقش تعیین‌کننده‌ای بر وضعیت مالی تولیدکنندگان و بنابراین متغیرهای کلان اقتصادی خواهد داشت. بر اساس نتایج به‌دست آمده از مدل فوق‌الذکر، بروز یک شوک منفی اعتباری موجب کاهش تولید، مصرف و سرمایه‌گذاری شده و نرخ سود تسهیلات را نیز با افزایش مواجه خواهد کرد. همچنین شوک مذکور موجب افزایش تورم و کاهش ساعات کار خواهد شد. همچنین در صورت اعمال سیاست پولی انقباضی، تولید، مصرف، سرمایه‌گذاری و میزان ساعات کار نیروی کار و تورم کاهش یافته و نرخ سود تسهیلات افزایش می‌یابد. نکته قابل ‌توجه در خصوص اعمال سیاست پولی انقباضی این است که پس از اعمال این سیاست، حجم تسهیلات اعطایی از سوی بانک‌ها یک رفتار نوسانی را تجربه خواهد کرد؛ به‌ طوری ‌که ابتدا کاهش یافته و پس از طی چند دوره مجدداً افزایش می‌یابد و پس ‌از آن نیز رفته ‌رفته آثار شوک مذکور از بین خواهد رفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting a model of how the central bank policies affect macroeconomic variables: A dynamic stochastic general equilibrium approach

نویسندگان [English]

  • Mohammad Mahdi Kakavandi 1
  • Farhad Rahbar 2
  • Mohsen Mehrara 2
  • Mehdi Sarem 3
1 Ph.D. Student, Faculty of Economics, University of Tehran & Researcher in Central Bank of Iran
2 Professor, Faculty of Economics, University of Tehran
3 Ph.D. Faculty of Economics, University of Shiraz & Researcher in Central Bank of Iran
چکیده [English]

Introduction: Banks, as the center of financial and payment systems, play a pivotal role in providing the resources needed for economic sectors by attracting and allocating resources in the economy. Therefore, the efficiency of the banking sector is considered as a key factor in economic growth. In addition, due to the banking-centric nature of the financing system in Iran, banks provide a significant part of the need for financial resources of manufacturing companies. So, shocks in financial markets affect the performance of firms by affecting the resources available to firms and, consequently, their financial expenditures, thereby affecting the real sector of the economy. The performance of banks is, in turn, influenced by the macroeconomic environment and the decisions of the central bank as a monetary policy maker. Therefore, it is very important to study the effects of the central bank policies and the change in the behavior of banks as financial intermediaries on different sectors of the economy. The purpose of this article is to investigate the effect of central bank policies on macroeconomic variables with an emphasis on the behavior of banks as the main suppliers of capital and liquidity for the manufacturing sector.
Methodology: In this article, the economic conditions of Iran are simulated in a dynamic stochastic general equilibrium model using seasonal information from 1989 to 2018, and the effects of monetary, credit and real shocks on the country's economy are analyzed. The model used for this purpose covers four parts including production sector, household sector, bank sector and central bank and government sector. At the beginning of the period, the household is the supplier of labor and keeps its resources either as a deposit with the bank or as cash. The production sector consists of three parts including the entrepreneur, the producer of capital goods and the producer of the final goods (firm). The entrepreneur is the supplier of capital, and the producer of capital uses the capital purchased from the entrepreneur and his own capital to generate new capital and, again at the end of the period, to sell the new produced capital to the entrepreneur. In this model, banks use household deposits to provide facilities to enterprises; this loan is used to produce goods. So, the bank's major task is to provide working capital for the production units and the resources required by the entrepreneur at the interest rates which are determined in advance. According to the macroeconomic conditions of Iran, these interest rates are determined by the Monetary and Credit Council in an orderly manner and target the tools of the central bank. An important point about the assumptions of this model is that, unlike most similar studies, the entrepreneur who receives the credits from banks may go bankrupt and be unable to repay the received money. This assumption is taken into account in the model, as observed in Iran’s economy. In this study, in order to design the model, the research works of Bernanke et al. (1999), Smith et al. (2007) and Boys and Zhou (2016) have been used.
Results and Discussion: Based on the results obtained from the model, the occurrence of a negative credit shock will reduce production, consumption and investment. It can also increase the interest rate on credits, raise the inflation and reduce working hours. Moreover, in case of contractionary monetary policies, production, consumption, investment, the number of working hours of the labor force and inflation can decrease while the interest on credits increases. The remarkable result about the implementation of contractionary monetary policies is that, after the implementation of this policy, the amount of credits granted by banks experiences fluctuations; it decreases at first, then increases again over a period of time, and then the effects of the shock gradually disappear.
Conclusion: According to the results of the model, a contractionary policy in the form of reducing the amount of credits not only has a negative effect on production and consumption but also increases inflation. In other words, reduction of the level of aggregate demand as a result of a reduction in credits does not lead to the control of inflation. This is due to the high dependence of Iran's economy on bank credit financing. Therefore, it is suggested that the central bank not control macroeconomic variables by controlling banks' interest rates and loans, because it will not have desirable results. Instead, it is recommended that the central bank direct macroeconomic variables by controlling the policy rate in the interbank market and changing the volume of bank reserves.

کلیدواژه‌ها [English]

  • Credit shock
  • Finance
  • Banking
  • Monetary policy
  • Dynamic stochastic general equilibrium model
Abo-Zaid, S. (2015). "Optimal Long Run Inflation with Occasionally Binding Financial Constraints". Eur.Econ.Rev. 75: 18-42.
Acosta, P. Lartey, E. & Mandelman, F. (2009). "Remittances and the Dutch Disease". Federal Reserve Bank of Atlanta, Working Paper 2007-8.
Bernanke, B. Gertler, M. and Gilchrist, S. (1999). "The Financial Accelerator in a Quantitative Business Cycle Framework". Handbook of Macroeconomics. Vol. 1c. North-Holland, Amsterdam: 1341-1393.
Central Bank of Iran, Economic Time Series Database. https://tsd.cbi.ir/.
Christensen, I. and Dib, A. (2008). "The Financial Accelerator in an Estimated New Keynesian Model". Review of Economic Dynamics 11: 155-178.
Christiano, L. J. Motto, R. and Rostagno, M. (2010). "Financial Factors in Economic Fluctuations ECB". Working Paper No. 1192.
Dagher, J. Jan, G. and Rafael, P. (2012). "Oil Windfalls in Ghana: A DSGE Approach". IMF Working Paper WP/10/116.
Dib, A. (2010). "Banks, Credit Market Friction, and Business Cycles". Bank of Canada, Working Paper.
Fukunaga, I. )2002(. "Financial Accelerator Effects in Japan’s Business Cycles". Bank of Japan Research and Statistics Department, Working Paper Series 02-6.
Garín, J. (2015). "Borrowing Constraints, Collateral Fluctuations, and the Labor Market". Journal of Economic Dynamics and Control 57(C): 112-130.
Gerali, A. Neri, S. Sessa, L. and Signoretti, F. M. (2010). "Credit and Banking in a DSGE Model of the Euro Area". Bank of Italy, Journal of Money, Credit and Banking 42(1(September 2010)): 107-141.
Gertler, M. Gilchrist, S. & Natalucci, F. M. (2007). "External Constraints on Monetary Policy and the Financial Accelerator". Journal of Money, Credit and Banking 39)2-3(: 295-330.
Ghafari, H. Saadatmehr, M. Souri, A. and Ranjbar Fallah, M.R. (2013). "A Survey on the Effect of Increase of Bank Interest Rate on Economic Growth of Iran Using the New-Keynesian Dynamic Stochastic General Equilibrium Model". Journal of Quantitative Economics 10(1(36)): 1-31.
Gholami, A. and Abasinejad, H. (2018). "Modeling the Value Added Tax on Bank Services in the Framework of the Dynamic Stochastic General Equilibrium Model for Iran". Tahghighat-e-Eghtesadi 53(3): 619-645.
Gilchrist, S. and Zakrajšek, E. (2012). "Credit Spreads and Business Cycle Fluctuations". The American Economic Review 102(4): 1692-1720.
Hagedorn, M. and Manovskii, I. (2008). "The Cyclical Behavior of Equilibrium Unemployment and Vacancies Revisited". Am. Econ.Rev 98: 1692-1706.
Hall, S. (2001). "Financial Accelerator Effects in UK Business Cycles". Working Paper No. 150, Bank of England.
Hammersland, R. and Traee, C.B. (2014). "The Financial Accelerator and the Real Economy: A Small Macroeconometric Model for Norway with Financial Frictions". Economic Modelling 36: 517-537.
Heidari, H. and Molabahrami, A. (2017). "The Impact of Credit Shocks on Dynamics of Financial and Macroeconomic Variables using a DSGE Model for the Iran Economy". Journal of Economic Research and Policies 24(80): 85-118.
Hollander, H. and Liu, G. (2013). "The Equity Price Channel in a New-Keynesian GSGE Model with Financial Frictions and Banking". Stellenbosch Economic Working Papers.
Jermann, U. and Vincenzo, Q. (2012). "Erratum: Macroeconomic Effects of Financial Shocks". American Economic Review 102(2): 238-271.
Karmelavičius, J. & Ramanauskas, T. (2019). "Bank Credit and Money Creation in a DSGE Model of a Small Open Economy". Baltic Journal of Economics 19(2): 296-333. 
Khalili, S. (2012). Investigating the Relationship between Liquidity Risk and Credit Risk in the Islamic Banking Industry, Master Thesis, Azad University.
Khiabani, N. and Amiri, H. (2015). "Designing a Dynamic Stochastic General Equilibrium Model of Open Economy to Examine the Impact of Oil Price Shocks on Macroeconomic Variables". Journal of Quantitative Economics 9(3): 25-59.
King, R. G. and Levine, R. (1993) "Finance and Growth: Schumpeter Might Be Right". The Quarterly Journal of Economics 3: 717-773.
Kiyotaki, N. and Moore, J. (1997). "Credit Cycles". J.Polit.Econ. 105: 211-248.
Lama, R. and Guzman, M. (2012). "Is Exchange Rate Stabilization an Appropriate Cure for the Dutch Disease? ". IMF Working Paper No. 10/182.
Levine, R. & Zervos, S. (1998). "Stock Markets Banks and Economic Growth". American Economic Review 88: 537-58.
Levine, R. (1997). "Financial Development and Economic Growth: Views and Agenda". Journal of Economic Literature 35(2): 688-726.
Meier, A. & Müller, G. J. (2006). "Fleshing out the Monetary Transmission Mechanism: Output Composition and the Role of Financial Frictions". Journal of Money Credit and Banking 38(8): 2099-2133.
Merola, R. (2014). "The Role of Financial Friction during the Crisis: an Estimated GSGE Model". Dynare Working Paper Series No. 33.
Mody, A. & Taylor, M. P. (2004). "Financial Predictors of Real Activity and the Financial Accelerator". Economics Letters 82(2): 167-172.
Pesaran, M. H. and Xu, T. T. (2016). "Business Cycle Effects of Credit Shocks in a DSGE Model with Firm Defaults". USC-INET Research Paper No. 16-13.
Rajan, R. G. & Zingales, L. (1998). "Which Capitalism? Lessons from the East Asian Crisis, Forthcoming". Journal of Applied Corporate Finance 11: 40-48.
Rostamzadeh, P. and Goudarzi Farahani, Y. (2018). "The Substitution of Taxes for Oil Revenues by Designing a Dynamic Stochastic General Equilibrium (DSGE)". The Economic Research 17(4): 121-145.
Shahhosseini, S. and Bahrami, J. (2013). "Designing a New Keynesian Dynamic Stochastic General Equilibrium Model for Iran's Economy with Banking Sector". Iranian Journal of Economic Research 17(53): 55-83.
Smets, F. and Raf, W. (2007). "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach". The American Economic Review 97(3): 586-606.
Tavakolian, H. and Komijani, A. (2012). "Monetary Policy under Fiscal Dominance and Implicit Inflation Target in Iran: A DSGE Approach". Journal of Economic Modeling Research 2(8): 87-117.
Villa, S. & Yang, J. (2011). "Financial Intermediaries in an Estimated DSGE Model for the United Kingdom". Bank of England Working Papers 431.
Zanetti, F. (2012). "Banking and the Role of Money in the Business Cycle". Journal of Macroeconomics 34: 87-94.
Zanetti, F. (2015). "Financial Shocks and Labor Market Fluctuations". Mimeo.