بررسی اثرات تبلیغات و اجبار به رفتار صرفه‌جویانه بر مصرف آب با توجه به تعاملات اجتماعی مصرف‌کنندگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل دکتری اقتصاد، دانشگاه فردوسی مشهد

2 استادیار گروه اقتصاد، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد

3 دانشیار گروه اقتصاد، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد

4 استادیار گروه جامعه شناسی، دانشگاه فردوسی مشهد

چکیده

کمبود منابع آب تجدیدپذیر در ایران، برخی از پژوهش‌گران را به مطالعه و بررسی سیاست‌های مناسب برای کاهش مصرف آب وادار کرده است. سیاست‌های تبلیغاتی (آگاه‌سازی مصرف‌کننده در جهت اتخاذ رفتار مناسب از روی اختیار) و سیاست‌های اجبار به داشتن رفتار صرفه‌جویانه (از طریق الزامات قانونی یا فنی مانند نصب کنتورهای هوشمند) دو نمونه از این سیاست‌ها هستند. اکثر مطالعات، تعاملات اجتماعی میان مصرف‌کنندگان آب خانگی و تغییر و تحول رفتار مصرفی آنان را در مدل‌های خود لحاظ نمی‌کنند که این امر باعث ضعف اساسی مدل می‌شود. لذا این مطالعه با مدل‌سازی تعاملات اجتماعی سعی در تدوین یک چهارچوب مبتنی بر عامل به کمک فرآیند انتشار برای بررسی بهتر رفتار مصرف آب دارد. مدل مبتنی بر عامل طراحی شده، برای مصرف‌کنندگان آب خانگی شهر شیراز و با توجه به داده‌های 1397-1384 کالیبره و از آن برای شبیه‌سازی هر یک از سناریوها برای سال‌های بعد استفاده می‌شود. نتایج نشان می‌دهد که با افزایش تبلیغات در سال شروع فرآیند شبیه‌سازی، بهبود مناسبی در نسبت افراد دارای رفتار همکارانه و مصرف در سال‌های پس از آن ایجاد خواهد شد. همچنین در مورد اجبار مصرف‌کنندگان به اتخاذ رفتار صرفه‌جویانه، نیازی به وادار کردن همه‌ی مصرف‌کنندگان (بالای یک حد مشخص مصرف) نیست بلکه بهتر است صرفا افراد با رفتار غیر همکارانه (و با مصرف بالاتر از یک حد مشخص) را مجبورکرد، زیرا پیروی از رفتار شبکه هم‌جوار باعث توزیع رفتار همکارانه در کل سیستم خواهد شد و به سبب آن صرفه‌جویی مناسبی در کل مصرف آب صورت خواهد گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effects of advertising and forcing frugal behavior on water consumption with regard to social interactions of consumers

نویسندگان [English]

  • Seyed Farzad Moosavi 1
  • Narges Salehnia 2
  • Ahmad Seifi 3
  • Ahmadreza AsgharpourMasouleh 4
1 Ph.D. of Economics, Department of Economics, Ferdowsi University of Mashhad
2 Assistant Professor, Department of Economics, Ferdowsi University of Mashhad
3 Associate Professor, Department of Economics, Ferdowsi University of Mashhad
4 Assistant Professor, Department of Social Sciences, Ferdowsi University of Mashhad
چکیده [English]

Introduction: In order to achieve sustainable development, it is necessary to actively manage the increasing consumption of water resources. In this regard, from the economic point of view, possible policies for water crisis management are presented in the form of increasing the supply and controlling the demand. For Iran, policy-makers have focused more on the supply side and the production of water and less on the demand management.
This study attempts to design a model for the behavioral characteristics of residential water consumers in terms of their social interactions (i.e., the effect of social networks on the consumption behavior) and to simulate the actual water demand in Shiraz City.
Theoretical framework
Description of the base model: Two types of consumption behaviors, cooperative (C) or non-cooperative (NC), have been considered for residential water consumers. Using the individual's social environment, economic and climatic variables (such as temperature) and the diffusion process model, the tendency to one of these two behaviors is determined. There is an optimal social consumption for each household according to its social environment. Depending on the type of the behavior and the optimal consumption, the household adjusts its demand in the next period. To determine the agent’s water consumption behavior according to the corresponding social network, the following utility functions are formulated:
 





(1)

 



(2)

 



(3)

 



(4)

 



(5)

 




 
These equations illustrate the utility of maintaining or changing household’s behavior. In these equations, a, b, are the parameters of the model.  and  are the proportion of neighbors of agent i with the behavior of C and NC, respectively, indicating the effect of a neighbors’ behavior on the behavior of an agent. The first right-hand part of the above equations represents the social pressure. The modification factor ( ) is the effect of the other factors on the household’s choice of behavior and measures the pressure to have behavior C.
Optimal water consumption affected by social network: When there are V neighbors, the optimal consumption is obtained by solving the following minimization problem:
 





(6)

 



 


  




: Neighbor’s water consumption per capita
 


: Household’s income


: Neighbor’s income
: Weight coefficient.


 



 
 
 
 
 




 
Household’s water consumption adjustment: The model assumes that agents compensate for a percentage of the gap between their consumption and their optimal water consumption in each period, according to the utility that they obtain from their social network.
This study is based on the data from 1000 household water users in the residential areas of Shiraz. In each residential cell of 300 × 300 square meters in the city, a household is selected to represent all the consumers in that geography. The present study minimizes the root mean square error (RMSE) between two sets of simulation data and real data, as a criterion for calibration. The data from 2005 to 2016 are used for the calibration process, and the data from 2017 to 2019 are used to validate the model.
Results and Discussion
Advertisement scenarios: Simulated advertising scenarios show 10, 20, and 30 percent of increase in advertising expenditures to encourage consumers to behave cooperatively. In 2032, the rate of reduction in per capita consumption, compared to 2019 and according to each scenario, will be 400, 950 and 1270 liters, respectively. The difference from the baseline scenario is more than these values. Also, the percentage of the people with cooperative behavior in the system will improve and reach 61, 73 and 81%, respectively.
Scenarios of coercive behavior: The coercion scenario includes situations in which the government can, by legal or technical requirements, force households with per capita consumption more than 54 or 55 cubic meters, or only non-cooperative households with the consumption more than 54 or 55 cubic meters, to cooperate.
In these scenarios, the order of the best results obtained to reduce consumption is as follows:
A- Forcing consumers with non-cooperative behaviour and consumption above 54 cubic meters
B- Forcing consumers with consumption above 54 cubic meters
C- Forcing consumers with non-cooperative behaviour and consumption above 55 cubic meters
D- Forcing consumers with consumption above 55 cubic meters
Conclusion: The results show that an increase in advertisement can improve the percentage of people with cooperative behavior to reduce consumption. Also, in the case of forcing consumers to adopt saving behavior, it is not necessary to force all the consumers (above a certain threshold of consumption), but it is better to force only those with non-cooperative behavior (and with consumption above a certain threshold). Following the behavior of a neighborhood network will distribute the cooperative behavior throughout the system and, therefore, cause proper saving in the total water consumption.

کلیدواژه‌ها [English]

  • Water consumption
  • Diffusion process
  • Social interactions
  • Advertising and coercion
Akerlof, G.A. & Kranton, R.E. (2010). Identity Economics: How Our Identities Shape Our Work, Wages, and Well-Being, (M. Feizi, Trans.). Tehran: Negaje Moaser publication.
Akhbari, M. & Grigg, N.S. (2013). "A Framework for an Agent-based Model to Manage Water Resources Conflicts". Water Resour Manage 27(11): 4039-4052.
Akhbari, M. & Grigg, N.S. (2015). "Managing Water Resources Conflicts: Modelling Behavior in a Decision Tool". Water Resour Manage 29(14): 5201-5216.
Akhbari, M. (2012). Models for Management of Water Conflicts: A Case Study of the San-Juaquin Watershed, California. Ph.D. Dissertation. Colorado State.
Alimashhadi, A. Shafiee, M.E. & Berglund, E. Z. (2017). "Agent-based Modeling to Simulate the Dynamics of Urban Water Supply: Climate, Population Growth, and Water Shortages". Sustainable Cities and Society 28: 420-434.
Antonelli, M. & Greco, F. (2015). The Water We Eat: Combining Virtual Water and Water Footprints, (M.M. Farsi Aliabadi & M. Daneshvar Kakhaki, Trans.). Tehran: Etka Publication.
Ariely, D. (2008). Predictably Irrational: The Hidden Forces That Shape Our Decisions, (R. Rambod, Trans.). Tehran: Mazyar Publication.
Athanasiadis, I. N. Mentes, A. K. Mitkas, P. A. & Mylopoulos, Y. A. (2005). "A Hybrid Agent-Based Model for Estimating Residential Water Demand". Simulation 81(3): 175-187.
Barthelemy, O. Moss, S. Downing, T. & Rouchier, J. (2001). Policy Modelling With ABSS: The Case of Water Demand Management. Centre for Policy Modelling. Manchester Metropolitan University. Manchester. CPM Report. 29:39
Bateson, M. Nettle, D. & Roberts, G. (2006). "Cues of Being Watched Enhance Cooperation In A Real-World Setting". Biology Letters 2(3): 412-414.
Bepple, J. (2016). The Application of Agent Based Modeling to Simulate Residential Water Use Responses to Urban Growth, Regulation, and Social Influence in Kelowna British Columbia, Canada (Doctoral Dissertation, University of British Columbia).
Bernedo, M. Ferraro, P.J. & Price, M. (2014). "The Persistent Impacts of Norm-Based Messaging & Their Implications for Water Conservation". Jounal of Consum Policy 37(3): 437-452.
Charness, G. & Rabin, M. (2002). "Understanding Social Preferences with Simple Tests". The Quarterly Journal of Economics 117(3): 817-869.
Chu, J. Wang, C. Chen, J. & Wang, H. (2009). "Agent-Based Residential Water Use Behaviour Simulation & Policy Implications: A Case-Study in Beijing City". Water Resources Management 23(15): 3267-3295.
Darbandsari, P. Kerachian, R. & Malakpour Estalaki, S. (2017). "An Agent-based Behavioral Simulation Model for Residential Water Dem & Management: A Case-Study of the Tehran City". Simulation Modelling Practice & Theory 78: 51-72.
Ding, N. Erfani, R. Mokhtar, H. & Erfani, T. (2016). "Agent Based Modelling for Water Resource Allocation in the Transboundary Nile River". Water 8(4): 139-151.
Downing, T.E. Moss, S. & Pahl-Wostl, C. (2000). "Understanding Climate Policy Using Participatory Agent-Based Social Simulation". Lect Notes Comput Sci 197: 198-213.
Edwards, M. Ferrand, N. Goreaud, F. & Huet, S. (2005). "The Relevance of Aggregating a Water Consumption Model cannot be Disconnected from the Choice of Information Available on the Resource". Simul. Model. Pract. Theory 13(4): 287-307.
Ernst, A. Schulz, C. Schwarz, N. & Janisch, S. (2005). "Shallow and Deep Modeling of Water Use in a Large. Spatially Explicit Coupled Simulation System". 3rd Conference of the European Social Simulation Association (ESSA), Koblenz, Germany.
Farhadi, S. Nikoo, M.R. Rakhshandehroo, Gh.R. Akhbari, M. & Alizadeh, M.R. (2016). "An Agent-Based-Nash Modeling Framework for Sustainable Groundwater Management: A Case Study". Agricultural Water Management 177: 348-358.
Ferraro, P.J. Miranda, J.J. & Price, MK. (2011). "The Persistence of Treatment Effects with Norm-Based Policy Instruments: Evidence from a Randomized Environmental Policy Experiment". American Economic Review 101(3): 318-22.
Jaeger, C.M. & Schultz, P.W. (2017). "Coupling Social Norms & Commitments: Testing the Under Detected Nature of Social Influence". Journal of Environmental Psychology 51: 199-208.
Linkola, L. Andrews, C.J. & Schuetze, T. (2013). "An Agent Based Model of Household Water Use". Water 5(3): 1082-1100.
Madani, K. AghaKouchak, A. & Mirchi, A. (2016). "Iran’s Socioeconomic Drought: Challenges of a Water-Bankrupt Nation". Iranian Studies 49(6): 997-1016.
Moss, S. & Edmonds, B. (2005). "Sociology & Simulation: Statistical & Qualitative cross validation". American Journal of Sociology 110(4): 1095-1131.
Newman, M. E. J. (2003). "The Structure and Function of Complex Networks". SIAM Rev 45: 167-256.
Otaki, Y. Ueda, K. & Sakura, O. (2017). "Effects of Feedback about Community Water Consumption on Residential Water Conservation". Journal of Cleaner Production 143: 719-730.
Rixon, A. Moglia, M. & Burn, S. (2007). "Exploring Water Conservation Behaviour through Participatory Agent-based Modelling". Topics on System Analysis and Integrated Water Resources Management 73-96.
Savojipour, S. Assari Arani, A. Agheli, L. and Hassanzadeh, A. (2018). "The Determinants of Urban Families’ Health Expenditure". The Journal of Economic Policy 10(19): 25-52. doi: 10.29252/jep.10.18.25.
Sharifi, A. Pourmand, A. Canuel, E. A. Ferer-Tyler, E. Peterson, L. C. Aichner, B. ... & Swart, P. K. (2015). "Abrupt Climate Variability since the Last Deglaciation based on a High-resolution, Multi-proxy Peat Record from NW Iran: The Hand that Rocked the Cradle of Civilization? ". Quaternary Science Reviews 123: 215-230.
Smith, V.L. (December 8, 2002). "Constructivist & Ecological Rationality in Economics". Prize Lecture.
Squazzoni, F. (2012). Agent-Based Computational Sociology,(A.R. Asgharpour Masouleh, Trans.). Mashhad: Sonboleh publication.
Tembata, K. & Takeuchi, K. (2018). "Collective Decision Making under Drought: An Empirical Study of Water Resource Management in Japan". Water Resources and Economics 22: 19-31.
Thaler, R.H. & Sunstein, C.R. (2008). Nudge: Improving Decisions about Health, Wealth, and Happiness, New Haven, Yale University Press.
World Bank (2017). Iran Economic Monitor, Spring 2017: Oil-Driven Recovery. Washington. DC.
Young, H.P. (1999). "Diffusion in Social Networks". Work. Pap. 2, Brookings Inst. Washington D.C.
Yuan, X.C. Wei, Y.M. Pan, S.Y. & Jin, J.L. (2014). "Urban Household Water Demand in Beijing by 2020: An Agent-based Model". Water Resour Manage 28(10): 2967-2980.
Zhao, J. Cai, X. & Wang, Z. (2013). "Comparing Administered and Market-based Water Allocation Systems through a Consistent Agent-based Modeling Framework". Journal of Environmental Management 123: 120-130.